270 lines
9.5 KiB
Rust
270 lines
9.5 KiB
Rust
use super::{
|
|
Bounds3f, CylinderShape, DirectionCone, Float, Interaction, Normal3f, PI, Point2f, Point3f,
|
|
Point3fi, QuadricIntersection, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext,
|
|
ShapeTrait, SurfaceInteraction, Transform, Vector3f, Vector3fi,
|
|
};
|
|
use crate::core::geometry::{Sqrt, Tuple, VectorLike};
|
|
use crate::core::interaction::InteractionTrait;
|
|
use crate::core::pbrt::gamma;
|
|
use crate::utils::interval::Interval;
|
|
use crate::utils::math::{difference_of_products, lerp, square};
|
|
use std::mem;
|
|
use std::sync::Arc;
|
|
|
|
impl CylinderShape {
|
|
pub fn new(
|
|
render_from_object: Arc<Transform>,
|
|
object_from_render: Arc<Transform>,
|
|
reverse_orientation: bool,
|
|
radius: Float,
|
|
z_min: Float,
|
|
z_max: Float,
|
|
phi_max: Float,
|
|
) -> Self {
|
|
Self {
|
|
radius,
|
|
z_min,
|
|
z_max,
|
|
phi_max,
|
|
render_from_object: render_from_object.clone(),
|
|
object_from_render,
|
|
reverse_orientation,
|
|
transform_swap_handedness: render_from_object.swaps_handedness(),
|
|
}
|
|
}
|
|
|
|
fn basic_intersect(&self, r: &Ray, t_max: Float) -> Option<QuadricIntersection> {
|
|
// Transform Ray origin and direction to object space
|
|
let oi = self
|
|
.object_from_render
|
|
.apply_to_interval(&Point3fi::new_from_point(r.o));
|
|
let di = self
|
|
.object_from_render
|
|
.apply_to_vector_interval(&Vector3fi::new_from_vector(r.d));
|
|
// Solve quadratic equation to find cylinder t0 and t1 values>>
|
|
let a: Interval = square(di.x()) + square(di.y()) + square(di.z());
|
|
let b: Interval = 2. * (di.x() * oi.x() + di.y() * oi.y() + di.z() * oi.z());
|
|
let c: Interval =
|
|
square(oi.x()) + square(oi.y()) + square(oi.z()) - square(Interval::new(self.radius));
|
|
let f = b / (2. * a);
|
|
let vx: Interval = oi.x() - f * di.x();
|
|
let vy: Interval = oi.y() - f * di.y();
|
|
let length: Interval = (square(vx) + square(vy)).sqrt();
|
|
let discrim: Interval =
|
|
4. * a * (Interval::new(self.radius) * length) * (Interval::new(self.radius) - length);
|
|
if discrim.low < 0. {
|
|
return None;
|
|
}
|
|
let root_discrim = discrim.sqrt();
|
|
let q = if Float::from(b) < 0. {
|
|
-0.5 * (b - root_discrim)
|
|
} else {
|
|
-0.5 * (b + root_discrim)
|
|
};
|
|
let mut t0 = q / a;
|
|
let mut t1 = c / q;
|
|
if t0.low > t1.low {
|
|
mem::swap(&mut t0, &mut t1);
|
|
}
|
|
|
|
// Check quadric shape t0 and t1 for nearest intersection
|
|
if t0.high > t_max || t1.low < 0. {
|
|
return None;
|
|
}
|
|
|
|
let mut t_shape_hit: Interval = t0;
|
|
if t_shape_hit.low <= 0. {
|
|
t_shape_hit = t1;
|
|
if t_shape_hit.high > t_max {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// Compute cylinder hit point and phi
|
|
let mut p_hit = Point3f::from(oi) + Float::from(t_shape_hit) * Vector3f::from(di);
|
|
let hit_rad = (square(p_hit.x()) + square(p_hit.y())).sqrt();
|
|
p_hit[0] *= self.radius / hit_rad;
|
|
p_hit[1] *= self.radius / hit_rad;
|
|
|
|
let mut phi = p_hit.y().atan2(p_hit.x());
|
|
if phi < 0. {
|
|
phi += 2. * PI;
|
|
}
|
|
|
|
if self.z_min > -self.radius && p_hit.z() < self.z_min
|
|
|| self.z_max < self.radius && p_hit.z() > self.z_max
|
|
|| phi > self.phi_max
|
|
{
|
|
if t_shape_hit == t1 {
|
|
return None;
|
|
}
|
|
if t1.high > t_max {
|
|
return None;
|
|
}
|
|
t_shape_hit = t1;
|
|
let mut p_hit =
|
|
Vector3f::from(Point3f::from(oi) + Float::from(t_shape_hit) * Vector3f::from(di));
|
|
let hit_rad = (square(p_hit.x()) + square(p_hit.y())).sqrt();
|
|
p_hit[0] *= self.radius / hit_rad;
|
|
p_hit[1] *= self.radius / hit_rad;
|
|
phi = p_hit.y().atan2(p_hit.x());
|
|
if phi < 0. {
|
|
phi += 2. * PI;
|
|
}
|
|
|
|
if p_hit.z() < self.z_min || p_hit.z() > self.z_max || phi > self.phi_max {
|
|
return None;
|
|
}
|
|
}
|
|
Some(QuadricIntersection::new(t_shape_hit.into(), p_hit, phi))
|
|
}
|
|
|
|
fn interaction_from_intersection(
|
|
&self,
|
|
isect: QuadricIntersection,
|
|
wo: Vector3f,
|
|
time: Float,
|
|
) -> SurfaceInteraction {
|
|
let p_hit = isect.p_obj;
|
|
let phi = isect.phi;
|
|
let u = phi / self.phi_max;
|
|
let v = (p_hit.z() - self.z_min) / (self.z_max - self.z_min);
|
|
let dpdu = Vector3f::new(-self.phi_max * p_hit.y(), self.phi_max * p_hit.x(), 0.);
|
|
let dpdv = Vector3f::new(0., 0., self.z_max - self.z_min);
|
|
let d2pduu = -self.phi_max * self.phi_max * Vector3f::new(p_hit.x(), p_hit.y(), 0.);
|
|
let d2pduv = Vector3f::zero();
|
|
let d2pdvv = Vector3f::zero();
|
|
let e = dpdu.dot(dpdu);
|
|
let f = dpdu.dot(dpdv);
|
|
let g = dpdv.dot(dpdv);
|
|
let n: Vector3f = dpdu.cross(dpdv).normalize();
|
|
let e_min = n.dot(d2pduu);
|
|
let f_min = n.dot(d2pduv);
|
|
let g_min = n.dot(d2pdvv);
|
|
// Compute dn/du and dn/dv from fundamental form coefficients
|
|
let efg2 = difference_of_products(e, f, f, f);
|
|
let inv_efg2 = if efg2 == 0. { 0. } else { 1. / efg2 };
|
|
let dndu = Normal3f::from(
|
|
(f_min * f - e_min * g) * inv_efg2 * dpdu + (e_min * f - f_min * e) * inv_efg2 * dpdv,
|
|
);
|
|
let dndv = Normal3f::from(
|
|
(g_min * f - f_min * g) * inv_efg2 * dpdu + (f_min * f - g_min * e) * inv_efg2 * dpdv,
|
|
);
|
|
|
|
let p_error = gamma(3) * Vector3f::new(p_hit.x(), p_hit.y(), 0.).abs();
|
|
let flip_normal = self.reverse_orientation ^ self.transform_swap_handedness;
|
|
let wo_object = self.object_from_render.apply_to_vector(wo);
|
|
// (*renderFromObject)
|
|
SurfaceInteraction::new(
|
|
Point3fi::new_with_error(p_hit, p_error),
|
|
Point2f::new(u, v),
|
|
wo_object,
|
|
dpdu,
|
|
dpdv,
|
|
dndu,
|
|
dndv,
|
|
time,
|
|
flip_normal,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl ShapeTrait for CylinderShape {
|
|
fn area(&self) -> Float {
|
|
(self.z_max - self.z_min) * self.radius * self.phi_max
|
|
}
|
|
|
|
fn bounds(&self) -> Bounds3f {
|
|
self.render_from_object
|
|
.apply_to_bounds(Bounds3f::from_points(
|
|
Point3f::new(-self.radius, -self.radius, self.z_min),
|
|
Point3f::new(self.radius, self.radius, self.z_max),
|
|
))
|
|
}
|
|
|
|
fn normal_bounds(&self) -> DirectionCone {
|
|
DirectionCone::entire_sphere()
|
|
}
|
|
|
|
fn intersect(&self, ray: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection> {
|
|
let t = t_max.unwrap_or(Float::INFINITY);
|
|
if let Some(isect) = self.basic_intersect(ray, t) {
|
|
let intr = self.interaction_from_intersection(isect.clone(), -ray.d, ray.time);
|
|
Some(ShapeIntersection::new(intr, isect.t_hit))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
fn intersect_p(&self, ray: &Ray, t_max: Option<Float>) -> bool {
|
|
if let Some(t) = t_max {
|
|
self.basic_intersect(ray, t).is_some()
|
|
} else {
|
|
self.basic_intersect(ray, Float::INFINITY).is_some()
|
|
}
|
|
}
|
|
|
|
fn pdf(&self, _interaction: &Interaction) -> Float {
|
|
1. / self.area()
|
|
}
|
|
|
|
fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float {
|
|
let ray = ctx.spawn_ray(wi);
|
|
if let Some(isect) = self.intersect(&ray, None) {
|
|
let n = isect.intr.n();
|
|
let absdot = Vector3f::from(n).dot(-wi).abs();
|
|
let pdf = (1. / self.area()) / (absdot / ctx.p().distance_squared(isect.intr.p()));
|
|
if pdf.is_infinite() {
|
|
return 0.;
|
|
}
|
|
pdf
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
|
|
fn sample(&self, u: Point2f) -> Option<ShapeSample> {
|
|
let z = lerp(u[0], self.z_min, self.z_max);
|
|
let phi = u[1] * self.phi_max;
|
|
let mut p_obj = Point3f::new(self.radius * phi.cos(), self.radius * phi.sin(), z);
|
|
let hit_rad = (square(p_obj.x()) + square(p_obj.y())).sqrt();
|
|
p_obj[0] *= self.radius / hit_rad;
|
|
p_obj[1] *= self.radius / hit_rad;
|
|
let p_obj_error = gamma(3) * Vector3f::new(p_obj.x(), p_obj.y(), 0.).abs();
|
|
let pi = self
|
|
.render_from_object
|
|
.apply_to_interval(&Point3fi::new_with_error(p_obj, p_obj_error));
|
|
let mut n = self
|
|
.render_from_object
|
|
.apply_to_normal(Normal3f::new(p_obj.x(), p_obj.y(), 0.))
|
|
.normalize();
|
|
if self.reverse_orientation {
|
|
n *= -1.;
|
|
}
|
|
|
|
let uv = Point2f::new(
|
|
phi / self.phi_max,
|
|
(p_obj.z() - self.z_min) / (self.z_max - self.z_min),
|
|
);
|
|
Some(ShapeSample {
|
|
intr: Arc::new(SurfaceInteraction::new_simple(pi, n, uv)),
|
|
pdf: 1. / self.area(),
|
|
})
|
|
}
|
|
|
|
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
|
let mut ss = self.sample(u)?;
|
|
let intr = Arc::make_mut(&mut ss.intr);
|
|
intr.get_common_mut().time = ctx.time;
|
|
let mut wi = ss.intr.p() - ctx.p();
|
|
if wi.norm_squared() == 0. {
|
|
return None;
|
|
}
|
|
wi = wi.normalize();
|
|
ss.pdf = Vector3f::from(ss.intr.n()).dot(-wi).abs() / ctx.p().distance_squared(ss.intr.p());
|
|
if ss.pdf.is_infinite() {
|
|
return None;
|
|
}
|
|
Some(ss)
|
|
}
|
|
}
|