use super::{ Bounds3f, CylinderShape, DirectionCone, Float, Interaction, Normal3f, PI, Point2f, Point3f, Point3fi, QuadricIntersection, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait, SurfaceInteraction, Transform, Vector3f, Vector3fi, }; use crate::core::geometry::{Sqrt, Tuple, VectorLike}; use crate::core::interaction::InteractionTrait; use crate::core::pbrt::gamma; use crate::utils::interval::Interval; use crate::utils::math::{difference_of_products, lerp, square}; use std::mem; use std::sync::Arc; impl CylinderShape { pub fn new( render_from_object: Arc, object_from_render: Arc, reverse_orientation: bool, radius: Float, z_min: Float, z_max: Float, phi_max: Float, ) -> Self { Self { radius, z_min, z_max, phi_max, render_from_object: render_from_object.clone(), object_from_render, reverse_orientation, transform_swap_handedness: render_from_object.swaps_handedness(), } } fn basic_intersect(&self, r: &Ray, t_max: Float) -> Option { // Transform Ray origin and direction to object space let oi = self .object_from_render .apply_to_interval(&Point3fi::new_from_point(r.o)); let di = self .object_from_render .apply_to_vector_interval(&Vector3fi::new_from_vector(r.d)); // Solve quadratic equation to find cylinder t0 and t1 values>> let a: Interval = square(di.x()) + square(di.y()) + square(di.z()); let b: Interval = 2. * (di.x() * oi.x() + di.y() * oi.y() + di.z() * oi.z()); let c: Interval = square(oi.x()) + square(oi.y()) + square(oi.z()) - square(Interval::new(self.radius)); let f = b / (2. * a); let vx: Interval = oi.x() - f * di.x(); let vy: Interval = oi.y() - f * di.y(); let length: Interval = (square(vx) + square(vy)).sqrt(); let discrim: Interval = 4. * a * (Interval::new(self.radius) * length) * (Interval::new(self.radius) - length); if discrim.low < 0. { return None; } let root_discrim = discrim.sqrt(); let q = if Float::from(b) < 0. { -0.5 * (b - root_discrim) } else { -0.5 * (b + root_discrim) }; let mut t0 = q / a; let mut t1 = c / q; if t0.low > t1.low { mem::swap(&mut t0, &mut t1); } // Check quadric shape t0 and t1 for nearest intersection if t0.high > t_max || t1.low < 0. { return None; } let mut t_shape_hit: Interval = t0; if t_shape_hit.low <= 0. { t_shape_hit = t1; if t_shape_hit.high > t_max { return None; } } // Compute cylinder hit point and phi let mut p_hit = Point3f::from(oi) + Float::from(t_shape_hit) * Vector3f::from(di); let hit_rad = (square(p_hit.x()) + square(p_hit.y())).sqrt(); p_hit[0] *= self.radius / hit_rad; p_hit[1] *= self.radius / hit_rad; let mut phi = p_hit.y().atan2(p_hit.x()); if phi < 0. { phi += 2. * PI; } if self.z_min > -self.radius && p_hit.z() < self.z_min || self.z_max < self.radius && p_hit.z() > self.z_max || phi > self.phi_max { if t_shape_hit == t1 { return None; } if t1.high > t_max { return None; } t_shape_hit = t1; let mut p_hit = Vector3f::from(Point3f::from(oi) + Float::from(t_shape_hit) * Vector3f::from(di)); let hit_rad = (square(p_hit.x()) + square(p_hit.y())).sqrt(); p_hit[0] *= self.radius / hit_rad; p_hit[1] *= self.radius / hit_rad; phi = p_hit.y().atan2(p_hit.x()); if phi < 0. { phi += 2. * PI; } if p_hit.z() < self.z_min || p_hit.z() > self.z_max || phi > self.phi_max { return None; } } Some(QuadricIntersection::new(t_shape_hit.into(), p_hit, phi)) } fn interaction_from_intersection( &self, isect: QuadricIntersection, wo: Vector3f, time: Float, ) -> SurfaceInteraction { let p_hit = isect.p_obj; let phi = isect.phi; let u = phi / self.phi_max; let v = (p_hit.z() - self.z_min) / (self.z_max - self.z_min); let dpdu = Vector3f::new(-self.phi_max * p_hit.y(), self.phi_max * p_hit.x(), 0.); let dpdv = Vector3f::new(0., 0., self.z_max - self.z_min); let d2pduu = -self.phi_max * self.phi_max * Vector3f::new(p_hit.x(), p_hit.y(), 0.); let d2pduv = Vector3f::zero(); let d2pdvv = Vector3f::zero(); let e = dpdu.dot(dpdu); let f = dpdu.dot(dpdv); let g = dpdv.dot(dpdv); let n: Vector3f = dpdu.cross(dpdv).normalize(); let e_min = n.dot(d2pduu); let f_min = n.dot(d2pduv); let g_min = n.dot(d2pdvv); // Compute dn/du and dn/dv from fundamental form coefficients let efg2 = difference_of_products(e, f, f, f); let inv_efg2 = if efg2 == 0. { 0. } else { 1. / efg2 }; let dndu = Normal3f::from( (f_min * f - e_min * g) * inv_efg2 * dpdu + (e_min * f - f_min * e) * inv_efg2 * dpdv, ); let dndv = Normal3f::from( (g_min * f - f_min * g) * inv_efg2 * dpdu + (f_min * f - g_min * e) * inv_efg2 * dpdv, ); let p_error = gamma(3) * Vector3f::new(p_hit.x(), p_hit.y(), 0.).abs(); let flip_normal = self.reverse_orientation ^ self.transform_swap_handedness; let wo_object = self.object_from_render.apply_to_vector(wo); // (*renderFromObject) SurfaceInteraction::new( Point3fi::new_with_error(p_hit, p_error), Point2f::new(u, v), wo_object, dpdu, dpdv, dndu, dndv, time, flip_normal, ) } } impl ShapeTrait for CylinderShape { fn area(&self) -> Float { (self.z_max - self.z_min) * self.radius * self.phi_max } fn bounds(&self) -> Bounds3f { self.render_from_object .apply_to_bounds(Bounds3f::from_points( Point3f::new(-self.radius, -self.radius, self.z_min), Point3f::new(self.radius, self.radius, self.z_max), )) } fn normal_bounds(&self) -> DirectionCone { DirectionCone::entire_sphere() } fn intersect(&self, ray: &Ray, t_max: Option) -> Option { let t = t_max.unwrap_or(Float::INFINITY); if let Some(isect) = self.basic_intersect(ray, t) { let intr = self.interaction_from_intersection(isect.clone(), -ray.d, ray.time); Some(ShapeIntersection::new(intr, isect.t_hit)) } else { None } } fn intersect_p(&self, ray: &Ray, t_max: Option) -> bool { if let Some(t) = t_max { self.basic_intersect(ray, t).is_some() } else { self.basic_intersect(ray, Float::INFINITY).is_some() } } fn pdf(&self, _interaction: &Interaction) -> Float { 1. / self.area() } fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float { let ray = ctx.spawn_ray(wi); if let Some(isect) = self.intersect(&ray, None) { let n = isect.intr.n(); let absdot = Vector3f::from(n).dot(-wi).abs(); let pdf = (1. / self.area()) / (absdot / ctx.p().distance_squared(isect.intr.p())); if pdf.is_infinite() { return 0.; } pdf } else { 0. } } fn sample(&self, u: Point2f) -> Option { let z = lerp(u[0], self.z_min, self.z_max); let phi = u[1] * self.phi_max; let mut p_obj = Point3f::new(self.radius * phi.cos(), self.radius * phi.sin(), z); let hit_rad = (square(p_obj.x()) + square(p_obj.y())).sqrt(); p_obj[0] *= self.radius / hit_rad; p_obj[1] *= self.radius / hit_rad; let p_obj_error = gamma(3) * Vector3f::new(p_obj.x(), p_obj.y(), 0.).abs(); let pi = self .render_from_object .apply_to_interval(&Point3fi::new_with_error(p_obj, p_obj_error)); let mut n = self .render_from_object .apply_to_normal(Normal3f::new(p_obj.x(), p_obj.y(), 0.)) .normalize(); if self.reverse_orientation { n *= -1.; } let uv = Point2f::new( phi / self.phi_max, (p_obj.z() - self.z_min) / (self.z_max - self.z_min), ); Some(ShapeSample { intr: Arc::new(SurfaceInteraction::new_simple(pi, n, uv)), pdf: 1. / self.area(), }) } fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option { let mut ss = self.sample(u)?; let intr = Arc::make_mut(&mut ss.intr); intr.get_common_mut().time = ctx.time; let mut wi = ss.intr.p() - ctx.p(); if wi.norm_squared() == 0. { return None; } wi = wi.normalize(); ss.pdf = Vector3f::from(ss.intr.n()).dot(-wi).abs() / ctx.p().distance_squared(ss.intr.p()); if ss.pdf.is_infinite() { return None; } Some(ss) } }