pbrt/shared/src/core/film.rs

742 lines
22 KiB
Rust

use crate::core::camera::CameraTransform;
use crate::core::filter::Filter;
use crate::core::geometry::{
Bounds2f, Bounds2fi, Bounds2i, Normal3f, Point2f, Point2i, Point3f, Tuple, Vector2f, Vector2fi,
Vector2i, Vector3f,
};
use crate::core::interaction::SurfaceInteraction;
use crate::core::pbrt::Float;
use crate::images::{Image, ImageChannelDesc, ImageChannelValues, ImageMetadata, PixelFormat};
use crate::spectra::color::{MatrixMulColor, SRGB, Triplet, white_balance};
use crate::spectra::data::generate_cie_d;
use crate::spectra::{
ConstantSpectrum, DenselySampledSpectrum, LAMBDA_MAX, LAMBDA_MIN, N_SPECTRUM_SAMPLES,
PiecewiseLinearSpectrum, RGB, RGBColorSpace, SampledSpectrum, SampledWavelengths, Spectrum,
SpectrumTrait, XYZ, cie_x, cie_y, cie_z, colorspace, get_named_spectrum,
};
use crate::utils::AtomicFloat;
use crate::utils::containers::Array2D;
use crate::utils::math::linear_least_squares;
use crate::utils::math::{SquareMatrix, wrap_equal_area_square};
use crate::utils::sampling::VarianceEstimator;
use crate::utils::transform::AnimatedTransform;
use std::sync::Arc;
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct RGBFilm {
pub base: FilmBase,
pub max_component_value: Float,
pub write_fp16: bool,
pub filter_integral: Float,
pub output_rgbf_from_sensor_rgb: SquareMatrix<Float, 3>,
pub pixels: Arc<Array2D<RGBPixel>>,
}
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct RGBPixel {
rgb_sum: [AtomicFloat; 3],
weight_sum: AtomicFloat,
rgb_splat: [AtomicFloat; 3],
}
#[cfg(not(target_os = "cuda"))]
impl RGBFilm {
pub fn new(
base: FilmBase,
colorspace: &RGBColorSpace,
max_component_value: Float,
write_fp16: bool,
) -> Self {
let sensor_ptr = base.sensor;
if sensor_ptr.is_null() {
panic!("Film must have a sensor");
}
let sensor = unsafe { &*self.sensor };
let filter_integral = base.filter.integral();
let sensor_matrix = sensor.xyz_from_sensor_rgb;
let output_rgbf_from_sensor_rgb = colorspace.rgb_from_xyz * sensor_matrix;
let width = base.pixel_bounds.p_max.x() - base.pixel_bounds.p_min.x();
let height = base.pixel_bounds.p_max.y() - base.pixel_bounds.p_min.y();
let count = (width * height) as usize;
let mut pixel_vec = Vec::with_capacity(count);
for _ in 0..count {
pixel_vec.push(RGBPixel::default());
}
let pixels_array = Array2D::new(base.pixel_bounds);
Self {
base,
max_component_value,
write_fp16,
filter_integral,
output_rgbf_from_sensor_rgb,
pixels: Arc::new(pixels_array),
}
}
}
impl RGBFilm {
pub fn base(&self) -> &FilmBase {
&self.base
}
pub fn base_mut(&mut self) -> &mut FilmBase {
&mut self.base
}
#[cfg(not(target_os = "cuda"))]
pub fn get_sensor(&self) -> Result<&PixelSensor, String> {
if self.sensor.is_null() {
return Err("FilmBase error: PixelSensor pointer is null.".to_string());
}
Ok(unsafe { &*self.sensor })
}
pub fn add_sample(
&self,
p_film: Point2i,
l: SampledSpectrum,
lambda: &SampledWavelengths,
_vi: Option<&VisibleSurface>,
weight: Float,
) {
let sensor = unsafe { self.get_sensor() };
let mut rgb = sensor.to_sensor_rgb(l, lambda);
let m = rgb.into_iter().copied().fold(f32::NEG_INFINITY, f32::max);
if m > self.max_component_value {
rgb *= self.max_component_value / m;
}
let pixel = &self.pixels[p_film];
for c in 0..3 {
pixel.rgb_sum[c].add((weight * rgb[c]) as f64);
}
pixel.weight_sum.add(weight as f64);
}
pub fn add_splat(&mut self, p: Point2f, l: SampledSpectrum, lambda: &SampledWavelengths) {
let sensor = unsafe { self.get_sensor() };
let mut rgb = sensor.to_sensor_rgb(l, lambda);
let m = rgb.into_iter().copied().fold(f32::NEG_INFINITY, f32::max);
if m > self.max_component_value {
rgb *= self.max_component_value / m;
}
let p_discrete = p + Vector2f::new(0.5, 0.5);
let radius = self.get_filter().radius();
let splat_bounds = Bounds2i::from_points(
(p_discrete - radius).floor(),
(p_discrete + radius).floor() + Vector2i::new(1, 1),
);
let splat_intersect = splat_bounds.union(self.pixel_bounds());
for pi in &splat_intersect {
let pi_f: Point2f = (*pi).into();
let wt = self
.get_filter()
.evaluate((p - pi_f - Vector2f::new(0.5, 0.5)).into());
if wt != 0. {
let pixel = &self.pixels[*pi];
for i in 0..3 {
pixel.rgb_splat[i].add((wt * rgb[i]) as f64);
}
}
}
}
pub fn get_pixel_rgb(&self, p: Point2i, splat_scale: Option<Float>) -> RGB {
let pixel = unsafe { &self.pixels.get(p.x(), p.y())[p] };
let mut rgb = RGB::new(
pixel.rgb_sum[0].load() as Float,
pixel.rgb_sum[1].load() as Float,
pixel.rgb_sum[2].load() as Float,
);
let weight_sum = pixel.weight_sum.load();
if weight_sum != 0. {
rgb /= weight_sum as Float
}
if let Some(splat) = splat_scale {
for c in 0..3 {
let splat_val = pixel.rgb_splat[c].load();
rgb[c] += splat * splat_val as Float / self.filter_integral;
}
} else {
for c in 0..3 {
let splat_val = pixel.rgb_splat[c].load();
rgb[c] += splat_val as Float / self.filter_integral;
}
}
self.output_rgbf_from_sensor_rgb.mul_rgb(rgb)
}
pub fn to_output_rgb(&self, l: SampledSpectrum, lambda: &SampledWavelengths) -> RGB {
let sensor = unsafe { self.get_sensor() };
let mut sensor_rgb = sensor.to_sensor_rgb(l, lambda);
self.output_rgbf_from_sensor_rgb.mul_rgb(sensor_rgb)
}
fn uses_visible_surface(&self) -> bool {
false
}
}
#[derive(Debug, Clone, Copy, Default)]
struct GBufferPixel {
pub rgb_sum: [AtomicFloat; 3],
pub weight_sum: AtomicFloat,
pub g_bugger_weight_sum: AtomicFloat,
pub rgb_splat: [AtomicFloat; 3],
pub p_sum: Point3f,
pub dz_dx_sum: AtomicFloat,
pub dz_dy_sum: Float,
pub n_sum: Normal3f,
pub ns_sum: Normal3f,
pub uv_sum: Point2f,
pub rgb_albedo_sum: [AtomicFloat; 3],
pub rgb_variance: VarianceEstimator,
}
#[derive(Clone, Debug)]
pub struct GBufferFilm {
pub base: FilmBase,
output_from_render: AnimatedTransform,
apply_inverse: bool,
pixels: Array2D<GBufferPixel>,
colorspace: RGBColorSpace,
max_component_value: Float,
write_fp16: bool,
filter_integral: Float,
output_rgbf_from_sensor_rgb: SquareMatrix<Float, 3>,
}
#[cfg(not(target_os = "cuda"))]
impl GBufferFilm {
pub fn new(
base: &FilmBase,
output_from_render: &AnimatedTransform,
apply_inverse: bool,
colorspace: &RGBColorSpace,
max_component_value: Float,
write_fp16: bool,
) -> Self {
assert!(!base.pixel_bounds.is_empty());
let sensor_ptr = base.sensor;
if sensor_ptr.is_null() {
panic!("Film must have a sensor");
}
let sensor = unsafe { &*sensor_ptr };
let output_rgbf_from_sensor_rgb = colorspace.rgb_from_xyz * sensor.xyz_from_sensor_rgb;
let filter_integral = base.filter.integral();
let pixels = Array2D::new(base.pixel_bounds);
Self {
base: base.clone(),
output_from_render: output_from_render.clone(),
apply_inverse,
pixels,
colorspace: colorspace.clone(),
max_component_value,
write_fp16,
filter_integral,
output_rgbf_from_sensor_rgb,
}
}
}
impl GBufferFilm {
pub fn base(&self) -> &FilmBase {
&self.base
}
pub fn base_mut(&mut self) -> &mut FilmBase {
&mut self.base
}
#[cfg(not(target_os = "cuda"))]
pub fn get_sensor(&self) -> Result<&PixelSensor, String> {
if self.sensor.is_null() {
return Err("FilmBase error: PixelSensor pointer is null.".to_string());
}
Ok(unsafe { &*self.sensor })
}
pub unsafe fn get_sensor(&self) -> &PixelSensor {
#[cfg(not(target_os = "cuda"))]
{
if self.sensor.is_null() {
panic!("FilmBase: PixelSensor pointer is null");
}
}
&*self.sensor
}
pub fn add_splat(&mut self, p: Point2f, l: SampledSpectrum, lambda: &SampledWavelengths) {
let sensor = unsafe { self.get_pixel_sensor() };
let mut rgb = sensor.to_sensor_rgb(l, lambda);
let m = rgb.into_iter().copied().fold(f32::NEG_INFINITY, f32::max);
if m > self.max_component_value {
rgb *= self.max_component_value / m;
}
let p_discrete = p + Vector2f::new(0.5, 0.5);
let radius = self.get_filter().radius();
let splat_bounds = Bounds2i::from_points(
(p_discrete - radius).floor(),
(p_discrete + radius).floor() + Vector2i::new(1, 1),
);
let splat_intersect = splat_bounds.union(self.pixel_bounds());
for pi in &splat_intersect {
let pi_f: Point2f = (*pi).into();
let wt = self
.get_filter()
.evaluate((p - pi_f - Vector2f::new(0.5, 0.5)).into());
if wt != 0. {
let pixel = &self.pixels[*pi];
for i in 0..3 {
pixel.rgb_splat[i].add((wt * rgb[i]) as f64);
}
}
}
}
pub fn to_output_rgb(&self, l: SampledSpectrum, lambda: &SampledWavelengths) -> RGB {
let sensor = unsafe { self.get_pixel_sensor() };
let sensor_rgb = sensor.to_sensor_rgb(l, lambda);
self.output_rgbf_from_sensor_rgb.mul_rgb(sensor_rgb)
}
pub fn get_pixel_rgb(&self, p: Point2i, splat_scale: Option<Float>) -> RGB {
let pixel = unsafe { &self.pixels.get(p.x(), p.y()) };
let mut rgb = RGB::new(
pixel.rgb_sum[0].load() as Float,
pixel.rgb_sum[1].load() as Float,
pixel.rgb_sum[2].load() as Float,
);
let weight_sum = pixel.weight_sum.load();
if weight_sum != 0. {
rgb /= weight_sum as Float
}
if let Some(splat) = splat_scale {
for c in 0..3 {
let splat_val = pixel.rgb_splat[c].load();
rgb[c] += splat * splat_val as Float / self.filter_integral;
}
} else {
for c in 0..3 {
let splat_val = pixel.rgb_splat[c].load();
rgb[c] += splat_val as Float / self.filter_integral;
}
}
self.output_rgbf_from_sensor_rgb.mul_rgb(rgb)
}
pub fn uses_visible_surface(&self) -> bool {
true
}
}
#[repr(C)]
#[derive(Debug, Default, Copy, Clone)]
pub struct SpectralPixel {
pub rgb_sum: [AtomicFloat; 3],
pub rgb_weigh_sum: AtomicFloat,
pub rgb_splat: [AtomicFloat; 3],
pub bucket_offset: usize,
}
pub struct SpectralPixelView<'a> {
pub metadata: &'a SpectralPixel,
pub bucket_sums: &'a [f64],
pub weight_sums: &'a [f64],
pub bucket_splats: &'a [AtomicFloat],
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct SpectralFilm {
pub base: FilmBase,
pub colorspace: RGBColorSpace,
pub lambda_min: Float,
pub lambda_max: Float,
pub n_buckets: usize,
pub max_component_value: Float,
pub write_fp16: bool,
pub filter_integral: Float,
pub pixels: Array2D<SpectralPixel>,
pub output_rgbf_from_sensor_rgb: SquareMatrix<Float, 3>,
pub bucket_sums: Vec<f64>,
pub weight_sums: Vec<f64>,
pub bucket_splats: Vec<AtomicFloat>,
}
#[cfg(not(target_os = "cuda"))]
impl SpectralFilm {
pub fn new(
base: &FilmBase,
lambda_min: Float,
lambda_max: Float,
n_buckets: usize,
colorspace: &RGBColorSpace,
max_component_value: Float,
write_fp16: bool,
) -> Self {
assert!(!base.pixel_bounds.is_empty());
let sensor_ptr = base.sensor;
if sensor_ptr.is_null() {
panic!("Film must have a sensor");
}
let sensor = unsafe { &*sensor_ptr };
let output_rgbf_from_sensor_rgb = colorspace.rgb_from_xyz * sensor.xyz_from_sensor_rgb;
let n_pixels = base.pixel_bounds.area() as usize;
let total_bucket_count = n_pixels * n_buckets;
let bucket_sums = vec![0.0; total_bucket_count];
let weight_sums = vec![0.0; total_bucket_count];
let filter_integral = base.filter.integral();
let bucket_splats: Vec<AtomicFloat> = (0..total_bucket_count)
.map(|_| AtomicFloat::new(0.0))
.collect();
let mut pixels = Array2D::<SpectralPixel>::new(base.pixel_bounds);
for i in 0..n_pixels {
pixels.get_linear_mut(i).bucket_offset = i * n_buckets;
}
Self {
base: base.clone(),
lambda_min,
lambda_max,
n_buckets,
pixels,
bucket_sums,
weight_sums,
bucket_splats,
colorspace: colorspace.clone(),
max_component_value,
write_fp16,
filter_integral,
output_rgbf_from_sensor_rgb,
}
}
}
impl SpectralFilm {
pub fn base(&self) -> &FilmBase {
&self.base
}
pub fn base_mut(&mut self) -> &mut FilmBase {
&mut self.base
}
fn uses_visible_surface(&self) -> bool {
true
}
pub fn get_pixel_view(&self, p: Point2i) -> SpectralPixelView {
let metadata = unsafe { &self.pixels.get(p.x(), p.y()) };
let start = metadata.bucket_offset;
let end = start + self.n_buckets;
SpectralPixelView {
metadata,
bucket_sums: &self.bucket_sums[start..end],
weight_sums: &self.weight_sums[start..end],
bucket_splats: &self.bucket_splats[start..end],
}
}
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct PixelSensor {
pub xyz_from_sensor_rgb: SquareMatrix<Float, 3>,
pub r_bar: DenselySampledSpectrum,
pub g_bar: DenselySampledSpectrum,
pub b_bar: DenselySampledSpectrum,
pub imaging_ratio: Float,
}
#[cfg(not(target_os = "cuda"))]
impl PixelSensor {
const N_SWATCH_REFLECTANCES: usize = 24;
pub fn new(
r: Spectrum,
g: Spectrum,
b: Spectrum,
output_colorspace: RGBColorSpace,
sensor_illum: Option<Arc<Spectrum>>,
imaging_ratio: Float,
swatches: &[Spectrum; 24],
) -> Result<Self, Box<dyn Error>> {
// As seen in usages of this constructos, sensor_illum can be null
// Going with the colorspace's own illuminant, but this might not be the right choice
// TODO: Test this
let illum: &Spectrum = match &sensor_illum {
Some(arc_illum) => &**arc_illum,
None => &output_colorspace.illuminant,
};
let r_bar = DenselySampledSpectrum::from_spectrum(&r);
let g_bar = DenselySampledSpectrum::from_spectrum(&g);
let b_bar = DenselySampledSpectrum::from_spectrum(&b);
let mut rgb_camera = [[0.; 3]; N_SWATCH_REFLECTANCES];
let swatches = Self::get_swatches();
for i in 0..N_SWATCH_REFLECTANCES {
let rgb = Self::project_reflectance::<RGB>(
&swatches[i],
illum,
&Spectrum::DenselySampled(r_bar.clone()),
&Spectrum::DenselySampled(g_bar.clone()),
&Spectrum::DenselySampled(b_bar.clone()),
);
for c in 0..3 {
rgb_camera[i][c] = rgb[c];
}
}
let mut xyz_output = [[0.; 3]; N_SWATCH_REFLECTANCES];
let sensor_white_g = illum.inner_product(&Spectrum::DenselySampled(g_bar.clone()));
let sensor_white_y = illum.inner_product(cie_y());
for i in 0..N_SWATCH_REFLECTANCES {
let s = swatches[i].clone();
let xyz = Self::project_reflectance::<XYZ>(
&s,
&output_colorspace.illuminant,
cie_x(),
cie_y(),
cie_z(),
) * (sensor_white_y / sensor_white_g);
for c in 0..3 {
xyz_output[i][c] = xyz[c];
}
}
let xyz_from_sensor_rgb = linear_least_squares(rgb_camera, xyz_output)?;
Ok(Self {
xyz_from_sensor_rgb,
r_bar,
g_bar,
b_bar,
imaging_ratio,
})
}
pub fn new_with_white_balance(
output_colorspace: &RGBColorSpace,
sensor_illum: Option<Arc<Spectrum>>,
imaging_ratio: Float,
) -> Self {
let r_bar = DenselySampledSpectrum::from_spectrum(cie_x());
let g_bar = DenselySampledSpectrum::from_spectrum(cie_y());
let b_bar = DenselySampledSpectrum::from_spectrum(cie_z());
let xyz_from_sensor_rgb: SquareMatrix<Float, 3>;
if let Some(illum) = sensor_illum {
let source_white = illum.to_xyz().xy();
let target_white = output_colorspace.w;
xyz_from_sensor_rgb = white_balance(source_white, target_white);
} else {
xyz_from_sensor_rgb = SquareMatrix::<Float, 3>::default();
}
Self {
xyz_from_sensor_rgb,
r_bar,
g_bar,
b_bar,
imaging_ratio,
}
}
pub fn project_reflectance<T: Triplet>(
refl: &Spectrum,
illum: &Spectrum,
b1: &Spectrum,
b2: &Spectrum,
b3: &Spectrum,
) -> T {
let mut result = [0.; 3];
let mut g_integral = 0.;
for lambda_ind in LAMBDA_MIN..=LAMBDA_MAX {
let lambda = lambda_ind as Float;
let illum_val = illum.evaluate(lambda);
g_integral += b2.evaluate(lambda) * illum_val;
let refl_illum = refl.evaluate(lambda) * illum_val;
result[0] += b1.evaluate(lambda) * refl_illum;
result[1] += b2.evaluate(lambda) * refl_illum;
result[2] += b3.evaluate(lambda) * refl_illum;
}
if g_integral > 0. {
let inv_g = 1. / g_integral;
result[0] *= inv_g;
result[1] *= inv_g;
result[2] *= inv_g;
}
T::from_triplet(result[0], result[1], result[2])
}
}
impl PixelSensor {
pub fn to_sensor_rgb(&self, l: SampledSpectrum, lambda: &SampledWavelengths) -> RGB {
let l_norm = SampledSpectrum::safe_div(&l, &lambda.pdf());
self.imaging_ratio
* RGB::new(
(self.r_bar.sample(lambda) * l_norm).average(),
(self.g_bar.sample(lambda) * l_norm).average(),
(self.b_bar.sample(lambda) * l_norm).average(),
)
}
}
#[repr(C)]
#[derive(Default, Copy, Clone)]
pub struct VisibleSurface {
pub p: Point3f,
pub n: Normal3f,
pub ns: Normal3f,
pub uv: Point2f,
pub time: Float,
pub dpdx: Vector3f,
pub dpdy: Vector3f,
pub albedo: SampledSpectrum,
pub set: bool,
}
impl VisibleSurface {
pub fn new(
_si: &SurfaceInteraction,
albedo: &SampledSpectrum,
_lambda: &SampledWavelengths,
) -> Self {
VisibleSurface {
albedo: *albedo,
..Default::default()
}
}
}
#[repr(C)]
#[derive(Default, Copy, Clone)]
pub struct FilmBase {
pub full_resolution: Point2i,
pub pixel_bounds: Bounds2i,
pub filter: Filter,
pub diagonal: Float,
pub sensor: *const PixelSensor,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub enum Film {
RGB(RGBFilm),
GBuffer(GBufferFilm),
Spectral(SpectralFilm),
}
impl Film {
fn base(&self) -> &FilmBase {
match self {
Film::RGB(f) => f.base(),
Film::GBuffer(f) => f.base(),
Film::Spectral(f) => f.base(),
}
}
pub fn base(&mut self) -> &mut FilmBase {
match self {
Film::RGB(f) => f.base_mut(),
Film::GBuffer(f) => f.base_mut(),
Film::Spectral(f) => f.base_mut(),
}
}
pub fn add_sample(
&self,
p_film: Point2i,
l: SampledSpectrum,
lambda: &SampledWavelengths,
visible_surface: Option<&VisibleSurface>,
weight: Float,
) {
match self {
Film::RGB(f) => f.add_sample(p_film, l, lambda, visible_surface, weight),
Film::GBuffer(f) => f.add_sample(p_film, l, lambda, visible_surface, weight),
Film::Spectral(f) => f.add_sample(p_film, l, lambda, visible_surface, weight),
}
}
pub fn add_splat(&mut self, p: Point2f, v: SampledSpectrum, lambda: &SampledWavelengths) {
match self {
Film::RGB(f) => f.add_splat(p, v, lambda),
Film::GBuffer(f) => f.add_splat(p, v, lambda),
Film::Spectral(f) => f.add_splat(p, v, lambda),
}
}
pub fn sample_wavelengths(&self, u: Float) -> SampledWavelengths {
SampledWavelengths::sample_visible(u)
}
pub fn uses_visible_surface(&self) -> bool {
match self {
Film::RGB(f) => f.uses_visible_surface(),
Film::GBuffer(f) => f.uses_visible_surface(),
Film::Spectral(f) => f.uses_visible_surface(),
}
}
pub fn full_resolution(&self) -> Point2i {
self.base().full_resolution
}
pub fn pixel_bounds(&self) -> Bounds2i {
self.base().pixel_bounds
}
pub fn sample_bounds(&self) -> Bounds2f {
let pixel_bounds = self.pixel_bounds();
let radius = self.get_filter().radius();
Bounds2f::from_points(
Point2f::from(pixel_bounds.p_min) - radius + Vector2f::new(0.5, 0.5),
Point2f::from(pixel_bounds.p_max) + radius - Vector2f::new(0.5, 0.5),
)
}
pub fn diagonal(&self) -> Float {
self.base().diagonal
}
pub fn get_filter(&self) -> &Filter {
&self.base().filter
}
pub fn get_pixel_rgb(&self, _p: Point2i, _splat_scale: Option<Float>) -> RGB {
todo!()
}
pub fn reset_pixel(&mut self, _p: Point2i) {
todo!()
}
pub fn to_output_rgb(&self, _v: SampledSpectrum, _lambda: &SampledWavelengths) -> RGB {
todo!()
}
}