779 lines
26 KiB
Rust
779 lines
26 KiB
Rust
use crate::core::geometry::{
|
|
Bounds3f, DirectionCone, Normal, Normal3f, Point2f, Point3f, Point3fi, Ray, Tuple, Vector3f,
|
|
VectorLike, spherical_quad_area,
|
|
};
|
|
use crate::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
|
|
use crate::core::pbrt::{Float, gamma};
|
|
use crate::core::shape::{Shape, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait};
|
|
use crate::utils::Ptr;
|
|
use crate::utils::Transform;
|
|
use crate::utils::math::{SquareMatrix, clamp, difference_of_products, lerp, quadratic};
|
|
use crate::utils::mesh::DeviceBilinearPatchMesh;
|
|
use crate::utils::sampling::{
|
|
bilinear_pdf, invert_spherical_rectangle_sample, sample_bilinear, sample_spherical_rectangle,
|
|
};
|
|
use core::ops::Add;
|
|
|
|
#[repr(C)]
|
|
#[derive(Debug, Copy, Clone)]
|
|
struct IntersectionData {
|
|
pub t: Float,
|
|
pub u: Float,
|
|
pub v: Float,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Debug, Default, Copy, Clone)]
|
|
struct TextureDerivative {
|
|
pub duds: Float,
|
|
pub dvds: Float,
|
|
pub dudt: Float,
|
|
pub dvdt: Float,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct BilinearIntersection {
|
|
pub uv: Point2f,
|
|
pub t: Float,
|
|
}
|
|
|
|
impl BilinearIntersection {
|
|
pub fn new(uv: Point2f, t: Float) -> Self {
|
|
Self { uv, t }
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct BilinearPatchShape {
|
|
pub mesh: Ptr<DeviceBilinearPatchMesh>,
|
|
pub blp_index: i32,
|
|
pub area: Float,
|
|
pub rectangle: bool,
|
|
}
|
|
|
|
impl BilinearPatchShape {
|
|
pub const MIN_SPHERICAL_SAMPLE_AREA: Float = 1e-4;
|
|
fn mesh(&self) -> Ptr<DeviceBilinearPatchMesh> {
|
|
self.mesh
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_vertex_indices(&self) -> [usize; 4] {
|
|
unsafe {
|
|
let base_ptr = self.mesh.vertex_indices.add((self.blp_index as usize) * 4);
|
|
[
|
|
*base_ptr.add(0) as usize,
|
|
*base_ptr.add(1) as usize,
|
|
*base_ptr.add(2) as usize,
|
|
*base_ptr.add(3) as usize,
|
|
]
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_points(&self) -> [Point3f; 4] {
|
|
let [v0, v1, v2, v3] = self.get_vertex_indices();
|
|
unsafe {
|
|
[
|
|
*self.mesh.p.add(v0),
|
|
*self.mesh.p.add(v1),
|
|
*self.mesh.p.add(v2),
|
|
*self.mesh.p.add(v3),
|
|
]
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_uvs(&self) -> Option<[Point2f; 4]> {
|
|
if self.mesh.uv.is_null() {
|
|
return None;
|
|
}
|
|
let [v0, v1, v2, v3] = self.get_vertex_indices();
|
|
unsafe {
|
|
Some([
|
|
*self.mesh.uv.add(v0),
|
|
*self.mesh.uv.add(v1),
|
|
*self.mesh.uv.add(v2),
|
|
*self.mesh.uv.add(v3),
|
|
])
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_shading_normals(&self) -> Option<[Normal3f; 4]> {
|
|
if self.mesh.n.is_null() {
|
|
return None;
|
|
}
|
|
let [v0, v1, v2, v3] = self.get_vertex_indices();
|
|
unsafe {
|
|
Some([
|
|
*self.mesh.n.add(v0),
|
|
*self.mesh.n.add(v1),
|
|
*self.mesh.n.add(v2),
|
|
*self.mesh.n.add(v3),
|
|
])
|
|
}
|
|
}
|
|
|
|
#[cfg(not(target_os = "cuda"))]
|
|
pub fn new(mesh: Ptr<DeviceBilinearPatchMesh>, blp_index: i32) -> Self {
|
|
let mut bp = BilinearPatchShape {
|
|
mesh,
|
|
blp_index,
|
|
area: 0.,
|
|
rectangle: false,
|
|
};
|
|
|
|
let [p00, p10, p01, p11] = bp.get_points();
|
|
|
|
bp.rectangle = bp.is_rectangle(p00, p10, p01, p11);
|
|
|
|
if bp.rectangle {
|
|
bp.area = p00.distance(p01) + p00.distance(p10);
|
|
} else {
|
|
const NA: usize = 3;
|
|
let mut p = [[Point3f::default(); NA + 1]; NA + 1];
|
|
#[allow(clippy::needless_range_loop)]
|
|
for i in 0..=NA {
|
|
let u = i as Float / NA as Float;
|
|
for j in 0..=NA {
|
|
let v = j as Float / NA as Float;
|
|
p[i][j] = lerp(u, lerp(v, p00, p01), lerp(v, p10, p11));
|
|
}
|
|
}
|
|
|
|
let mut area = 0.;
|
|
for i in 0..NA {
|
|
for j in 0..NA {
|
|
let diag1 = p[i + 1][j + 1] - p[i][j];
|
|
let diag2 = p[i + 1][j] - p[i][j + 1];
|
|
let quad_area = 0.5 * diag1.cross(diag2).norm();
|
|
area += quad_area;
|
|
}
|
|
}
|
|
bp.area = area;
|
|
}
|
|
bp
|
|
}
|
|
|
|
fn is_rectangle(&self, p00: Point3f, p10: Point3f, p01: Point3f, p11: Point3f) -> bool {
|
|
if p00 == p01 || p01 == p11 || p11 == p10 || p10 == p00 {
|
|
return false;
|
|
}
|
|
|
|
let n = Normal3f::from((p10 - p00).cross(p01 - p00).normalize());
|
|
if (p11 - p00).normalize().dot(n.into()).abs() > 1e-5 {
|
|
return false;
|
|
}
|
|
|
|
let p_center_vec = Vector3f::from(p00 + p01.into() + p10.into() + p11.into()) / 4.;
|
|
let p_center = Point3f::from(p_center_vec);
|
|
let d2 = [
|
|
p00.distance_squared(p_center),
|
|
p01.distance_squared(p_center),
|
|
p10.distance_squared(p_center),
|
|
p11.distance_squared(p_center),
|
|
];
|
|
|
|
for i in 0..4 {
|
|
if (d2[i] - d2[0]).abs() / d2[0] > 1e-4 {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
|
|
fn intersect_bilinear_patch(
|
|
&self,
|
|
ray: &Ray,
|
|
t_max: Float,
|
|
corners: &[Point3f; 4],
|
|
) -> Option<BilinearIntersection> {
|
|
let &[p00, p01, p10, p11] = corners;
|
|
let a = (p10 - p00).cross(p01 - p11).dot(ray.d);
|
|
let c = (p00 - ray.o).cross(ray.d).dot(p01 - p00);
|
|
let b = (p10 - ray.o).cross(ray.d).dot(p11 - p10) - (a + c);
|
|
|
|
let (u1, u2) = quadratic(a, b, c)?;
|
|
|
|
let eps = gamma(10)
|
|
* (ray.o.abs().max_component_value()
|
|
+ ray.d.abs().max_component_value()
|
|
+ p00.abs().max_component_value()
|
|
+ p10.abs().max_component_value()
|
|
+ p01.abs().max_component_value()
|
|
+ p11.abs().max_component_value());
|
|
|
|
let hit1 = self.check_candidate(u1, ray, corners);
|
|
let hit2 = if u1 != u2 {
|
|
self.check_candidate(u2, ray, corners)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
// Find best hit from candidates
|
|
[hit1, hit2]
|
|
.into_iter()
|
|
.flatten()
|
|
.filter(|hit| hit.t < t_max && hit.t > eps)
|
|
.min_by(|a, b| a.t.partial_cmp(&b.t).unwrap())
|
|
.map(|best_hit| {
|
|
BilinearIntersection::new(Point2f::new(best_hit.u, best_hit.v), best_hit.t)
|
|
})
|
|
}
|
|
|
|
fn check_candidate(
|
|
&self,
|
|
u: Float,
|
|
ray: &Ray,
|
|
corners: &[Point3f; 4],
|
|
) -> Option<IntersectionData> {
|
|
if !(0.0..=1.0).contains(&u) {
|
|
return None;
|
|
}
|
|
let &[p00, p01, p10, p11] = corners;
|
|
let uo: Point3f = lerp(u, p00, p10);
|
|
let ud: Point3f = Point3f::from(lerp(u, p01, p11) - uo);
|
|
let deltao = uo - ray.o;
|
|
let perp = ray.d.cross(ud.into());
|
|
let p2 = perp.norm_squared();
|
|
if p2 == 0. {
|
|
return None;
|
|
}
|
|
let v_det = SquareMatrix::<Float, 3>::new([
|
|
[deltao.x(), ray.d.x(), perp.x()],
|
|
[deltao.y(), ray.d.y(), perp.y()],
|
|
[deltao.z(), ray.d.z(), perp.z()],
|
|
])
|
|
.determinant();
|
|
|
|
if !(0.0..=p2).contains(&v_det) {
|
|
return None;
|
|
}
|
|
|
|
let t_det = SquareMatrix::<Float, 3>::new([
|
|
[deltao.x(), ud.x(), perp.x()],
|
|
[deltao.y(), ud.y(), perp.y()],
|
|
[deltao.z(), ud.z(), perp.z()],
|
|
])
|
|
.determinant();
|
|
|
|
Some(IntersectionData {
|
|
t: t_det / p2,
|
|
u,
|
|
v: v_det / p2,
|
|
})
|
|
}
|
|
|
|
fn interaction_from_intersection(
|
|
&self,
|
|
uv: Point2f,
|
|
time: Float,
|
|
wo: Vector3f,
|
|
) -> SurfaceInteraction {
|
|
// Base geom and derivatives
|
|
let corners = self.get_points();
|
|
let [p00, p01, p10, p11] = corners;
|
|
let p = lerp(uv[0], lerp(uv[1], p00, p01), lerp(uv[1], p10, p11));
|
|
let mut dpdu = lerp(uv[1], p10, p11) - lerp(uv[1], p00, p01);
|
|
let mut dpdv = lerp(uv[0], p01, p11) - lerp(uv[0], p00, p10);
|
|
|
|
// If textured, apply coordinates
|
|
let patch_uvs = self.get_uvs();
|
|
let (st, derivatives) =
|
|
self.apply_texture_coordinates(uv, patch_uvs.try_into().unwrap(), &mut dpdu, &mut dpdv);
|
|
|
|
// Compute second moments
|
|
let n = Normal3f::from(dpdu.cross(dpdv).normalize());
|
|
let (mut dndu, mut dndv) = self.calculate_surface_curvature(&corners, &dpdu, &dpdv, n);
|
|
if let Some(ref deriv) = derivatives {
|
|
let dnds = Normal3f::from(dndu * deriv.duds + dndv * deriv.dvds);
|
|
let dndt = Normal3f::from(dndu * deriv.dudt + dndv * deriv.dvdt);
|
|
dndu = dnds;
|
|
dndv = dndt;
|
|
}
|
|
|
|
let p_abs_sum = p00.abs()
|
|
+ Vector3f::from(p01.abs())
|
|
+ Vector3f::from(p10.abs())
|
|
+ Vector3f::from(p11.abs());
|
|
let p_error = gamma(6) * Vector3f::from(p_abs_sum);
|
|
|
|
let flip_normal = self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness;
|
|
let pi = Point3fi::new_with_error(p, p_error);
|
|
let mut isect =
|
|
SurfaceInteraction::new(pi, st, wo, dpdu, dpdv, dndu, dndv, time, flip_normal);
|
|
|
|
self.apply_shading_normals(&mut isect, self.get_shading_normals(), uv, derivatives);
|
|
isect
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn apply_texture_coordinates(
|
|
&self,
|
|
uv: Point2f,
|
|
patch_uvs: Option<[Point2f; 4]>,
|
|
dpdu: &mut Vector3f,
|
|
dpdv: &mut Vector3f,
|
|
) -> (Point2f, Option<TextureDerivative>) {
|
|
let Some(uvs) = patch_uvs else {
|
|
return (uv, Some(TextureDerivative::default()));
|
|
};
|
|
let uv00 = uvs[0];
|
|
let uv01 = uvs[1];
|
|
let uv10 = uvs[2];
|
|
let uv11 = uvs[3];
|
|
// Compute partial derivatives of (u, v) with respect to (s, t)
|
|
let st = lerp(uv[0], lerp(uv[1], uv00, uv01), lerp(uv[1], uv10, uv11));
|
|
let dstdu = lerp(uv[1], uv10, uv11) - lerp(uv[1], uv00, uv01);
|
|
let dstdv = lerp(uv[0], uv01, uv11) - lerp(uv[0], uv00, uv10);
|
|
|
|
let det = difference_of_products(dstdu[0], dstdv[1], dstdu[1], dstdv[0]);
|
|
let inv_det = if det == 0.0 { 0.0 } else { 1.0 / det };
|
|
let duds = dstdv[1] * inv_det;
|
|
let dvds = -dstdv[0] * inv_det;
|
|
let dudt = -dstdu[1] * inv_det;
|
|
let dvdt = dstdu[0] * inv_det;
|
|
|
|
let dpds = *dpdu * duds + *dpdv * dvds;
|
|
let mut dpdt = *dpdu * dudt + *dpdv * dvdt;
|
|
|
|
if dpdu.cross(*dpdv).dot(dpds.cross(dpdt)) < 0. {
|
|
dpdt = -dpdt;
|
|
}
|
|
|
|
*dpdu = dpds;
|
|
*dpdv = dpdt;
|
|
|
|
let factors = TextureDerivative {
|
|
duds,
|
|
dvds,
|
|
dudt,
|
|
dvdt,
|
|
};
|
|
(st, Some(factors))
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn calculate_base_derivatives(
|
|
&self,
|
|
corners: &[Point3f; 4],
|
|
uv: Point2f,
|
|
) -> (Point3f, Vector3f, Vector3f) {
|
|
let (p00, p10, p01, p11) = (corners[0], corners[1], corners[2], corners[3]);
|
|
|
|
let p = lerp(uv[0], lerp(uv[1], p00, p01), lerp(uv[1], p10, p11));
|
|
let dpdu = lerp(uv[1], p10, p11) - lerp(uv[1], p00, p01);
|
|
let dpdv = lerp(uv[0], p01, p11) - lerp(uv[0], p00, p10);
|
|
(p, dpdu, dpdv)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn calculate_surface_curvature(
|
|
&self,
|
|
corners: &[Point3f; 4],
|
|
dpdu: &Vector3f,
|
|
dpdv: &Vector3f,
|
|
n: Normal3f,
|
|
) -> (Normal3f, Normal3f) {
|
|
let (p00, p10, p01, p11) = (corners[0], corners[1], corners[2], corners[3]);
|
|
let e = dpdu.dot(*dpdu);
|
|
let f = dpdu.dot(*dpdv);
|
|
let g = dpdv.dot(*dpdv);
|
|
let d2pduv = (p00 - p01) + (p11 - p10);
|
|
let d2pduu = Vector3f::zero();
|
|
let d2pdvv = Vector3f::zero();
|
|
|
|
let e_min = n.dot(d2pduu.into());
|
|
let f_min = n.dot(d2pduv.into());
|
|
let g_min = n.dot(d2pdvv.into());
|
|
|
|
let egf2 = difference_of_products(e, g, f, f);
|
|
let inv_egf2 = if egf2 == 0. { 0. } else { 1. / egf2 };
|
|
|
|
let dndu = Normal3f::from(
|
|
(f_min * f - e_min * g) * inv_egf2 * *dpdu + (e_min * f - f_min * e) * inv_egf2 * *dpdv,
|
|
);
|
|
let dndv = Normal3f::from(
|
|
(g_min * f - f_min * g) * inv_egf2 * *dpdu + (f_min * f - g_min * e) * inv_egf2 * *dpdv,
|
|
);
|
|
(dndu, dndv)
|
|
}
|
|
|
|
fn apply_shading_normals(
|
|
&self,
|
|
isect: &mut SurfaceInteraction,
|
|
shading_normals: Option<[Normal3f; 4]>,
|
|
uv: Point2f,
|
|
derivatives: Option<TextureDerivative>,
|
|
) {
|
|
let Some(normals) = shading_normals else {
|
|
return;
|
|
};
|
|
let n00 = normals[1];
|
|
let n10 = normals[1];
|
|
let n01 = normals[2];
|
|
let n11 = normals[3];
|
|
let ns = lerp(uv[0], lerp(uv[1], n00, n01), lerp(uv[1], n10, n11)).normalize();
|
|
let mut dndu = lerp(uv[1], n10, n11) - lerp(uv[1], n00, n01);
|
|
let mut dndv = lerp(uv[0], n01, n11) - lerp(uv[0], n00, n10);
|
|
|
|
if let Some(deriv) = derivatives {
|
|
let dnds = dndu * deriv.duds + dndv * deriv.dvds;
|
|
let dndt = dndu * deriv.dudt + dndv * deriv.dvdt;
|
|
dndu = dnds;
|
|
dndv = dndt;
|
|
}
|
|
let r = Transform::rotate_from_to(isect.n().normalize().into(), ns.into());
|
|
|
|
isect.set_shading_geom(
|
|
ns,
|
|
r.apply_to_vector(isect.dpdu),
|
|
r.apply_to_vector(isect.dpdv),
|
|
dndu,
|
|
r.apply_to_normal(dndv),
|
|
true,
|
|
);
|
|
}
|
|
|
|
fn sample_area_and_pdf(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
|
let mut ss = self.sample(u)?;
|
|
ss.intr.get_common_mut().time = ctx.time;
|
|
|
|
let mut wi = ss.intr.p() - ctx.p();
|
|
let dist_sq = wi.norm_squared();
|
|
if dist_sq == 0. {
|
|
return None;
|
|
}
|
|
|
|
wi = wi.normalize();
|
|
let abs_dot = Vector3f::from(ss.intr.n()).abs_dot(-wi);
|
|
if abs_dot == 0. {
|
|
return None;
|
|
}
|
|
|
|
ss.pdf *= dist_sq / abs_dot;
|
|
|
|
if ss.pdf.is_infinite() { None } else { Some(ss) }
|
|
}
|
|
|
|
fn sample_parametric_coords(&self, corners: &[Point3f; 4], u: Point2f) -> (Point2f, Float) {
|
|
let (p00, p10, p01, p11) = (corners[0], corners[1], corners[2], corners[3]);
|
|
if !self.mesh.image_distribution.is_null() {
|
|
let image_distrib = self.mesh.image_distribution;
|
|
let (uv, pdf, _) = image_distrib.sample(u);
|
|
(uv, pdf)
|
|
} else if !self.rectangle {
|
|
let w = [
|
|
(p10 - p00).cross(p01 - p00).norm(),
|
|
(p10 - p00).cross(p11 - p10).norm(),
|
|
(p01 - p00).cross(p11 - p01).norm(),
|
|
(p11 - p10).cross(p11 - p01).norm(),
|
|
];
|
|
let uv = sample_bilinear(u, &w);
|
|
let pdf = bilinear_pdf(uv, &w);
|
|
(uv, pdf)
|
|
} else {
|
|
(u, 1.0)
|
|
}
|
|
}
|
|
|
|
fn sample_solid_angle(
|
|
&self,
|
|
corners: &[Point3f; 4],
|
|
ctx: &ShapeSampleContext,
|
|
u: Point2f,
|
|
corner_dirs: &[Vector3f; 4],
|
|
) -> Option<ShapeSample> {
|
|
let (p00, p10, p01, _p11) = (corners[0], corners[1], corners[2], corners[3]);
|
|
let mut pdf = 1.;
|
|
if ctx.ns != Normal3f::zero() {
|
|
let w = [
|
|
0.01_f32.max(corner_dirs[0].dot(ctx.ns.into()).abs()),
|
|
0.01_f32.max(corner_dirs[1].dot(ctx.ns.into()).abs()),
|
|
0.01_f32.max(corner_dirs[2].dot(ctx.ns.into()).abs()),
|
|
0.01_f32.max(corner_dirs[3].dot(ctx.ns.into()).abs()),
|
|
];
|
|
let u = sample_bilinear(u, &w);
|
|
pdf *= bilinear_pdf(u, &w);
|
|
}
|
|
|
|
let eu = p10 - p00;
|
|
let ev = p01 - p00;
|
|
let (p, quad_pdf) = sample_spherical_rectangle(ctx.p(), p00, eu, ev, u);
|
|
pdf *= quad_pdf?;
|
|
|
|
// Compute (u, v) and surface normal for sampled points on rectangle
|
|
let uv = Point2f::new(
|
|
(p - p00).dot(eu) / p10.distance_squared(p00),
|
|
(p - p00).dot(ev) / p01.distance_squared(p00),
|
|
);
|
|
|
|
let patch_uvs = self.get_uvs();
|
|
let patch_normals = self.get_shading_normals();
|
|
let n = self.compute_sampled_normal(patch_normals, &eu, &ev, uv);
|
|
let st = patch_uvs.map_or(uv, |uvs| {
|
|
lerp(
|
|
uv[0],
|
|
lerp(uv[1], uvs[0], uvs[1]),
|
|
lerp(uv[1], uvs[2], uvs[3]),
|
|
)
|
|
});
|
|
|
|
let pi = Point3fi::new_from_point(p);
|
|
let mut intr = SurfaceInteraction::new_simple(pi, n, st);
|
|
intr.common.time = ctx.time;
|
|
Some(ShapeSample {
|
|
intr: Interaction::Surface(intr),
|
|
pdf,
|
|
})
|
|
}
|
|
|
|
fn compute_sampled_normal(
|
|
&self,
|
|
patch_normals: Option<[Normal3f; 4]>,
|
|
dpdu: &Vector3f,
|
|
dpdv: &Vector3f,
|
|
uv: Point2f,
|
|
) -> Normal3f {
|
|
let mut n = Normal3f::from(dpdu.cross(*dpdv).normalize());
|
|
|
|
if let Some(normals) = patch_normals {
|
|
// Apply interpolated shading normal to orient the geometric normal
|
|
let ns = lerp(
|
|
uv[0],
|
|
lerp(uv[1], normals[0], normals[2]),
|
|
lerp(uv[1], normals[1], normals[3]),
|
|
);
|
|
n = n.face_forward(ns);
|
|
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
|
n = -n;
|
|
}
|
|
n
|
|
}
|
|
}
|
|
|
|
impl ShapeTrait for BilinearPatchShape {
|
|
#[inline]
|
|
fn area(&self) -> Float {
|
|
self.area
|
|
}
|
|
|
|
#[inline]
|
|
fn normal_bounds(&self) -> DirectionCone {
|
|
let [p00, p01, p10, p11] = self.get_points();
|
|
let normals = self.get_shading_normals();
|
|
if p00 == p10 || p10 == p11 || p11 == p01 || p01 == p00 {
|
|
let dpdu = lerp(0.5, p10, p11) - lerp(0.5, p00, p01);
|
|
let dpdv = lerp(0.5, p01, p11) - lerp(0.5, p00, p10);
|
|
let mut n = Normal3f::from(dpdu.cross(dpdv).normalize());
|
|
if let Some(normals) = normals {
|
|
let interp_n = (normals[0] + normals[1] + normals[2] + normals[3]) / 4.;
|
|
n = n.face_forward(interp_n);
|
|
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
|
n *= -1.;
|
|
}
|
|
return DirectionCone::new_from_vector(Vector3f::from(n));
|
|
}
|
|
|
|
// Compute bilinear patch normals n10, n01, and n11
|
|
let mut n00 = Normal3f::from((p10 - p00).cross(p01 - p00).normalize());
|
|
let mut n10 = Normal3f::from((p11 - p10).cross(p00 - p10).normalize());
|
|
let mut n01 = Normal3f::from((p00 - p01).cross(p11 - p01).normalize());
|
|
let mut n11 = Normal3f::from((p01 - p11).cross(p10 - p11).normalize());
|
|
|
|
if let Some(normals) = normals {
|
|
n00 = n00.face_forward(normals[0]);
|
|
n10 = n10.face_forward(normals[1]);
|
|
n01 = n01.face_forward(normals[2]);
|
|
n11 = n11.face_forward(normals[3]);
|
|
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
|
n00 = -n00;
|
|
n10 = -n10;
|
|
n01 = -n01;
|
|
n11 = -n11;
|
|
}
|
|
|
|
// Compute average normal and return normal bounds for patch
|
|
let n_avg = (n00 + n10 + n01 + n11).normalize();
|
|
let cos_theta = n_avg
|
|
.dot(n00)
|
|
.min(n_avg.dot(n10))
|
|
.min(n_avg.dot(n01))
|
|
.min(n_avg.dot(n11));
|
|
DirectionCone::new(n_avg.into(), clamp(cos_theta, -1., 1.))
|
|
}
|
|
|
|
#[inline]
|
|
fn bounds(&self) -> Bounds3f {
|
|
let [p00, p01, p10, p11] = self.get_points();
|
|
Bounds3f::from_points(p00, p01).union(Bounds3f::from_points(p10, p11))
|
|
}
|
|
|
|
#[inline]
|
|
fn intersect(&self, ray: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection> {
|
|
let t_max_val = t_max?;
|
|
if let Some(bilinear_hit) =
|
|
self.intersect_bilinear_patch(ray, t_max_val, &self.get_points())
|
|
{
|
|
let intr = self.interaction_from_intersection(bilinear_hit.uv, ray.time, -ray.d);
|
|
|
|
Some(ShapeIntersection {
|
|
intr,
|
|
t_hit: bilinear_hit.t,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn intersect_p(&self, ray: &Ray, t_max: Option<Float>) -> bool {
|
|
let t_max_val = t_max.unwrap_or(Float::INFINITY);
|
|
let corners = self.get_points();
|
|
self.intersect_bilinear_patch(ray, t_max_val, &corners)
|
|
.is_some()
|
|
}
|
|
|
|
#[inline]
|
|
fn sample(&self, u: Point2f) -> Option<ShapeSample> {
|
|
let corners = self.get_points();
|
|
let [p00, p01, p10, p11] = corners;
|
|
// Sample bilinear patch parametric coordinate (u, v)
|
|
let (uv, pdf) = self.sample_parametric_coords(&corners, u);
|
|
// Compute bilinear patch geometric quantities at sampled (u, v)
|
|
let (p, dpdu, dpdv) = self.calculate_base_derivatives(&corners, uv);
|
|
if dpdu.norm_squared() == 0. || dpdv.norm_squared() == 0. {
|
|
return None;
|
|
}
|
|
|
|
// Compute surface normal for sampled bilinear patch (u, v)
|
|
let patch_normals = self.get_shading_normals();
|
|
let patch_uvs = self.get_uvs();
|
|
let n = self.compute_sampled_normal(patch_normals, &dpdu, &dpdv, uv);
|
|
let st = patch_uvs.map_or(uv, |patch_uvs| {
|
|
lerp(
|
|
uv[0],
|
|
lerp(uv[1], patch_uvs[0], patch_uvs[1]),
|
|
lerp(uv[1], patch_uvs[2], patch_uvs[3]),
|
|
)
|
|
});
|
|
|
|
let p_abs_sum = p00.abs()
|
|
+ Vector3f::from(p01.abs())
|
|
+ Vector3f::from(p10.abs())
|
|
+ Vector3f::from(p11.abs());
|
|
let p_error = gamma(6) * Vector3f::from(p_abs_sum);
|
|
let pi = Point3fi::new_with_error(p, p_error);
|
|
Some(ShapeSample {
|
|
intr: Interaction::Surface(SurfaceInteraction::new_simple(pi, n, st)),
|
|
pdf: pdf / dpdu.cross(dpdv).norm(),
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
|
let corners = self.get_points();
|
|
let [p00, p01, p10, p11] = corners;
|
|
let v00 = (p00 - ctx.p()).normalize();
|
|
let v10 = (p10 - ctx.p()).normalize();
|
|
let v01 = (p01 - ctx.p()).normalize();
|
|
let v11 = (p11 - ctx.p()).normalize();
|
|
|
|
let use_area_sampling = self.rectangle
|
|
|| !self.mesh.image_distribution.is_null()
|
|
|| spherical_quad_area(v00, v10, v11, v01) <= Self::MIN_SPHERICAL_SAMPLE_AREA;
|
|
if use_area_sampling {
|
|
self.sample_area_and_pdf(ctx, u)
|
|
} else {
|
|
self.sample_solid_angle(&corners, ctx, u, &[v00, v10, v01, v11])
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn pdf(&self, intr: &Interaction) -> Float {
|
|
let Interaction::Surface(si) = intr else {
|
|
return 0.0;
|
|
};
|
|
|
|
let corners = self.get_points();
|
|
let [p00, p01, p10, p11] = corners;
|
|
let patch_uvs = self.get_uvs();
|
|
let uv = if let Some(uvs) = patch_uvs {
|
|
Point2f::invert_bilinear(si.common.uv, &uvs)
|
|
} else {
|
|
si.common.uv
|
|
};
|
|
|
|
let param_pdf = if !self.mesh.image_distribution.is_null() {
|
|
self.mesh.image_distribution.pdf(uv)
|
|
} else if self.rectangle {
|
|
let w = [
|
|
(p10 - p00).cross(p01 - p00).norm(),
|
|
(p10 - p00).cross(p11 - p10).norm(),
|
|
(p01 - p00).cross(p11 - p01).norm(),
|
|
(p11 - p10).cross(p11 - p01).norm(),
|
|
];
|
|
bilinear_pdf(uv, &w)
|
|
} else {
|
|
1.
|
|
};
|
|
|
|
let (_, dpdu, dpdv) = self.calculate_base_derivatives(&corners, uv);
|
|
let cross = dpdu.cross(dpdv).norm();
|
|
if cross == 0. { 0. } else { param_pdf / cross }
|
|
}
|
|
|
|
#[inline]
|
|
fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float {
|
|
let ray = ctx.spawn_ray(wi);
|
|
let Some(isect) = self.intersect(&ray, None) else {
|
|
return 0.;
|
|
};
|
|
|
|
let corners = self.get_points();
|
|
let [p00, p01, p10, p11] = corners;
|
|
|
|
let v00 = (p00 - ctx.p()).normalize();
|
|
let v10 = (p10 - ctx.p()).normalize();
|
|
let v01 = (p01 - ctx.p()).normalize();
|
|
let v11 = (p11 - ctx.p()).normalize();
|
|
|
|
let use_area_sampling = !self.rectangle
|
|
|| !self.mesh.image_distribution.is_null()
|
|
|| spherical_quad_area(v00, v10, v01, v11) <= Self::MIN_SPHERICAL_SAMPLE_AREA;
|
|
|
|
if use_area_sampling {
|
|
let intr_wrapper = Interaction::Surface(isect.intr.clone());
|
|
let isect_pdf = self.pdf(&intr_wrapper);
|
|
let distsq = ctx.p().distance_squared(isect.intr.p());
|
|
let absdot = Vector3f::from(isect.intr.n()).abs_dot(-wi);
|
|
if absdot == 0. {
|
|
return 0.;
|
|
}
|
|
let pdf = isect_pdf * distsq / absdot;
|
|
if pdf.is_infinite() { 0. } else { pdf }
|
|
} else {
|
|
let mut pdf = 1. / spherical_quad_area(v00, v10, v01, v11);
|
|
if ctx.ns != Normal3f::zero() {
|
|
let w = [
|
|
0.01_f32.max(v00.dot(ctx.ns.into()).abs()),
|
|
0.01_f32.max(v10.dot(ctx.ns.into()).abs()),
|
|
0.01_f32.max(v01.dot(ctx.ns.into()).abs()),
|
|
0.01_f32.max(v11.dot(ctx.ns.into()).abs()),
|
|
];
|
|
let u = invert_spherical_rectangle_sample(
|
|
ctx.p(),
|
|
p00,
|
|
p10 - p00,
|
|
p01 - p00,
|
|
isect.intr.p(),
|
|
);
|
|
pdf *= bilinear_pdf(u, &w);
|
|
}
|
|
pdf
|
|
}
|
|
}
|
|
}
|