pbrt/shared/src/shapes/triangle.rs

515 lines
16 KiB
Rust

use crate::Float;
use crate::core::geometry::{
Bounds3f, DirectionCone, Normal, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3,
Vector3f,
};
use crate::core::geometry::{Sqrt, Tuple, VectorLike, spherical_triangle_area};
use crate::core::interaction::{
Interaction, InteractionBase, InteractionTrait, SimpleInteraction, SurfaceInteraction,
};
use crate::core::pbrt::gamma;
use crate::core::shape::{ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait};
use crate::utils::Ptr;
use crate::utils::math::{difference_of_products, square};
use crate::utils::mesh::DeviceTriangleMesh;
use crate::utils::sampling::{
bilinear_pdf, invert_spherical_triangle_sample, sample_bilinear, sample_spherical_triangle,
sample_uniform_triangle,
};
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct TriangleIntersection {
b0: Float,
b1: Float,
b2: Float,
t: Float,
}
impl TriangleIntersection {
pub fn new(b0: Float, b1: Float, b2: Float, t: Float) -> Self {
Self { b0, b1, b2, t }
}
}
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct TriangleShape {
pub mesh: Ptr<DeviceTriangleMesh>,
pub tri_index: i32,
}
impl TriangleShape {
pub const MIN_SPHERICAL_SAMPLE_AREA: Float = 3e-4;
pub const MAX_SPHERICAL_SAMPLE_AREA: Float = 6.22;
#[inline(always)]
fn get_vertex_indices(&self) -> [usize; 3] {
unsafe {
let base_ptr = self.mesh.vertex_indices.add((self.tri_index as usize) * 3);
[
*base_ptr.add(0) as usize,
*base_ptr.add(1) as usize,
*base_ptr.add(2) as usize,
]
}
}
#[inline(always)]
fn get_points(&self) -> [Point3f; 3] {
let [v0, v1, v2] = self.get_vertex_indices();
unsafe {
[
*self.mesh.p.add(v0),
*self.mesh.p.add(v1),
*self.mesh.p.add(v2),
]
}
}
#[inline(always)]
fn get_uvs(&self) -> Option<[Point2f; 3]> {
if self.mesh.uv.is_null() {
return None;
}
let [v0, v1, v2] = self.get_vertex_indices();
unsafe {
Some([
*self.mesh.uv.add(v0),
*self.mesh.uv.add(v1),
*self.mesh.uv.add(v2),
])
}
}
#[inline(always)]
fn get_tangents(&self) -> Option<[Vector3f; 3]> {
if self.mesh.s.is_null() {
return None;
}
let [v0, v1, v2] = self.get_vertex_indices();
unsafe {
Some([
*self.mesh.s.add(v0),
*self.mesh.s.add(v1),
*self.mesh.s.add(v2),
])
}
}
#[inline(always)]
fn get_shading_normals(&self) -> Option<[Normal3f; 3]> {
if self.mesh.n.is_null() {
return None;
}
let [v0, v1, v2] = self.get_vertex_indices();
unsafe {
Some([
*self.mesh.n.add(v0),
*self.mesh.n.add(v1),
*self.mesh.n.add(v2),
])
}
}
pub fn new(mesh: Ptr<DeviceTriangleMesh>, tri_index: i32) -> Self {
Self { mesh, tri_index }
}
pub fn get_mesh(&self) -> Ptr<DeviceTriangleMesh> {
self.mesh
}
pub fn solid_angle(&self, p: Point3f) -> Float {
let [p0, p1, p2] = self.get_points();
spherical_triangle_area(
(p0 - p).normalize(),
(p1 - p).normalize(),
(p2 - p).normalize(),
)
}
fn intersect_triangle(
&self,
_ray: &Ray,
_t_max: Float,
_p0: Point3f,
_p1: Point3f,
_p2: Point3f,
) -> Option<TriangleIntersection> {
todo!()
}
fn interaction_from_intersection(
&self,
ti: TriangleIntersection,
time: Float,
wo: Vector3f,
) -> SurfaceInteraction {
let [p0, p1, p2] = self.get_points();
let uv = self.get_uvs().unwrap_or([
Point2f::new(0.0, 0.0),
Point2f::new(1.0, 0.0),
Point2f::new(1.0, 1.0),
]);
let duv02 = uv[0] - uv[2];
let duv12 = uv[1] - uv[2];
let dp02 = p0 - p2;
let dp12 = p1 - p2;
let determinant = difference_of_products(duv02[0], duv12[1], duv02[1], duv12[0]);
let degenerate = determinant.abs() < 1e-9;
let (mut dpdu, mut dpdv) = if !degenerate {
let invdet = 1. / determinant;
let ret0 = difference_of_products(duv12[1], dp02, duv02[1], dp12) * invdet;
let ret1 = difference_of_products(duv02[0], dp12, duv12[0], dp02) * invdet;
(ret0, ret1)
} else {
(Vector3f::zero(), Vector3f::zero())
};
if degenerate || dpdu.cross(dpdv).norm_squared() == 0. {
let mut ng = (p2 - p0).cross(p1 - p0);
if ng.norm_squared() == 0. {
let v1 = p2 - p0;
let v2 = p1 - p0;
ng = v1.cast::<f64>().cross(v2.cast::<f64>()).cast::<Float>();
assert!(ng.norm_squared() != 0.);
}
(dpdu, dpdv) = ng.normalize().coordinate_system();
}
let p0_vec = Vector3f::from(p0);
let p1_vec = Vector3f::from(p1);
let p2_vec = Vector3f::from(p2);
let p_hit = Point3f::from(ti.b0 * p0_vec + ti.b1 * p1_vec + ti.b2 * p2_vec);
let uv_hit = Point2f::from(
ti.b0 * Vector2f::from(uv[0])
+ ti.b1 * Vector2f::from(uv[1])
+ ti.b2 * Vector2f::from(uv[2]),
);
let p_abs_sum = (ti.b0 * p0_vec).abs() + (ti.b1 * p1_vec).abs() + (ti.b2 * p2_vec).abs();
let p_error = gamma(7) * p_abs_sum;
let mut ng = Normal3f::from(dp02.cross(dp12).normalize());
let flip_normal = self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness;
if flip_normal {
ng = -ng;
}
let mut isect = SurfaceInteraction::new(
Point3fi::new_with_error(p_hit, p_error),
uv_hit,
wo,
dpdu,
dpdv,
Normal3f::zero(),
Normal3f::zero(),
time,
flip_normal,
);
isect.face_index = if !self.mesh.face_indices.is_null() {
unsafe { *self.mesh.face_indices.add(self.tri_index as usize) }
} else {
0
};
isect.common.n = ng;
isect.shading.n = ng;
if !self.mesh.p.is_null() || !self.mesh.s.is_null() {
self.compute_shading_geometry(&mut isect, &ti, uv, dpdu, determinant, degenerate);
}
isect
}
fn compute_shading_geometry(
&self,
isect: &mut SurfaceInteraction,
ti: &TriangleIntersection,
uv: [Point2f; 3],
dpdu_geom: Vector3f,
determinant: Float,
degenerate_uv: bool,
) {
// Interpolate vertex normals if they exist
let ns = if let Some(normals) = self.get_shading_normals() {
let n = ti.b0 * normals[0] + ti.b1 * normals[1] + ti.b2 * normals[2];
if n.norm_squared() > 0.0 {
n.normalize()
} else {
isect.n()
}
} else {
isect.n()
};
// Interpolate tangents if they exist
let mut ss = if let Some(tangents) = self.get_tangents() {
let s = ti.b0 * tangents[0] + ti.b1 * tangents[1] + ti.b2 * tangents[2];
if s.norm_squared() > 0.0 {
s.normalize()
} else {
dpdu_geom
}
} else {
dpdu_geom
};
// Ensure shading tangent (ss) is perpendicular to shading normal (ns)
let mut ts = ns.cross(ss.into());
if ts.norm_squared() > 0.0 {
ss = ts.cross(ns.into()).into();
} else {
let (s, t) = ns.coordinate_system();
ss = s.into();
ts = t.into();
}
// How does the normal change as we move across UVs?
let (dndu, dndv) = if let Some(normals) = self.get_shading_normals() {
if degenerate_uv {
let dn = (normals[2] - normals[0]).cross(normals[1] - normals[0]);
if dn.norm_squared() == 0.0 {
(Normal3f::zero(), Normal3f::zero())
} else {
let (dnu, dnv) = dn.coordinate_system();
(Normal3f::from(dnu), Normal3f::from(dnv))
}
} else {
let dn1 = normals[0] - normals[2];
let dn2 = normals[1] - normals[2];
let duv02 = uv[0] - uv[2];
let duv12 = uv[1] - uv[2];
let inv_det = 1.0 / determinant;
(
difference_of_products(duv12[1], dn1, duv02[1], dn2) * inv_det,
difference_of_products(duv02[0], dn2, duv12[0], dn1) * inv_det,
)
}
} else {
(Normal3f::zero(), Normal3f::zero())
};
isect.set_shading_geom(ns, ss, ts.into(), dndu, dndv, true);
}
}
impl ShapeTrait for TriangleShape {
fn bounds(&self) -> Bounds3f {
let [p0, p1, p2] = self.get_points();
Bounds3f::from_points(p0, p1).union_point(p2)
}
fn normal_bounds(&self) -> DirectionCone {
let [p0, p1, p2] = self.get_points();
let mut n: Normal3f = (p1 - p0).cross(p2 - p0).normalize().into();
if let Some(normals) = self.get_shading_normals() {
let [n0, n1, n2] = normals;
let ns = n0 + n1 + n2;
n = n.face_forward(ns);
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
n = -n;
}
DirectionCone::new_from_vector(n.into())
}
fn area(&self) -> Float {
let [p0, p1, p2] = self.get_points();
0.5 * (p1 - p0).cross(p2 - p0).norm()
}
fn sample(&self, u: Point2f) -> Option<ShapeSample> {
let [p0, p1, p2] = self.get_points();
let b = sample_uniform_triangle(u);
let p = p0 + b[1] * (p1 - p0) + b[2] * (p2 - p0);
let mut n: Normal3f = (p1 - p0).cross(p2 - p0).normalize().into();
if let Some(normals) = self.get_shading_normals() {
let [n0, n1, n2] = normals;
let ns = b[0] * n0 + b[1] * n1 + b[2] * n2; // b[2] is (1 - b0 - b1)
n = n.face_forward(ns);
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
n = -n;
}
let uv_sample = if let Some(uvs) = self.get_uvs() {
let [uv0, uv1, uv2] = uvs;
uv0 + b[1] * (uv1 - uv0) + b[2] * (uv2 - uv0)
} else {
let v = b[0] * Vector2f::new(0.0, 0.0)
+ b[1] * Vector2f::new(1.0, 0.0)
+ b[2] * Vector2f::new(1.0, 1.0);
Point2f::from(v)
};
let p0_v = Vector3f::from(p0);
let p1_v = Vector3f::from(p1);
let p2_v = Vector3f::from(p2);
let p_abs_sum = (b[0] * p0_v).abs() + (b[1] * p1_v).abs() + (b[2] * p2_v).abs();
let p_error = Vector3f::from(p_abs_sum) * gamma(6);
let intr_base = InteractionBase::new_surface_geom(
Point3fi::new_with_error(p, p_error),
n,
uv_sample,
Vector3f::default(),
0.,
);
Some(ShapeSample {
intr: Interaction::Simple(SimpleInteraction::new(intr_base)),
pdf: 1.0 / self.area(),
})
}
fn sample_from_context(&self, ctx: &ShapeSampleContext, mut u: Point2f) -> Option<ShapeSample> {
let [p0, p1, p2] = self.get_points();
let (b, tri_pdf) = sample_spherical_triangle(&[p0, p1, p2], ctx.p(), u)?;
if tri_pdf == 0. {
return None;
}
let solid_angle = self.solid_angle(ctx.p());
if solid_angle < Self::MIN_SPHERICAL_SAMPLE_AREA
|| solid_angle > Self::MAX_SPHERICAL_SAMPLE_AREA
{
let mut ss = self.sample(u)?;
ss.intr.get_common_mut().time = ctx.time;
let mut wi: Normal3f = (ss.intr.p() - ctx.p()).into();
if wi.norm_squared() == 0. {
return None;
}
wi = wi.normalize();
ss.pdf /= ss.intr.n().abs_dot(-wi) / ctx.p().distance_squared(ss.intr.p());
if ss.pdf.is_infinite() {
return None;
}
return Some(ss);
}
let mut pdf = 1.;
if ctx.ns != Normal3f::zero() {
let rp = ctx.p();
let wi: [Vector3f; 3] = [
(p0 - rp).normalize(),
(p1 - rp).normalize(),
(p2 - rp).normalize(),
];
let w: [Float; 4] = [
ctx.ns.abs_dot(wi[1].into()).max(0.01),
ctx.ns.abs_dot(wi[1].into()).max(0.01),
ctx.ns.abs_dot(wi[0].into()).max(0.01),
ctx.ns.abs_dot(wi[2].into()).max(0.01),
];
u = sample_bilinear(u, &w);
pdf = bilinear_pdf(u, &w);
}
let p0_v = Vector3f::from(p0);
let p1_v = Vector3f::from(p1);
let p2_v = Vector3f::from(p2);
let p_abs_sum = (b[0] * p0_v).abs() + (b[1] * p1_v).abs() + (b[2] * p2_v).abs();
let mut n: Normal3f = (p1 - p0).cross(p2 - p0).normalize().into();
if let Some(normals) = self.get_shading_normals() {
let [n0, n1, n2] = normals;
let ns = b[0] * n0 + b[1] * n1 + (1. - b[0] - b[1]) * n2;
n = n.face_forward(ns);
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
n = -n;
}
let uv_sample = if let Some(uvs) = self.get_uvs() {
let [uv0, uv1, uv2] = uvs;
uv0 + b[1] * (uv1 - uv0) + b[2] * (uv2 - uv0)
} else {
let v = b[0] * Vector2f::new(0.0, 0.0)
+ b[1] * Vector2f::new(1.0, 0.0)
+ b[2] * Vector2f::new(1.0, 1.0);
Point2f::from(v)
};
let p = p0 + b[1] * (p1 - p0) + b[2] * (p2 - p0);
let p_error = Vector3f::from(p_abs_sum) * gamma(6);
let intr_base = InteractionBase::new_surface_geom(
Point3fi::new_with_error(p, p_error),
n,
uv_sample,
Vector3f::default(),
0.,
);
Some(ShapeSample {
intr: Interaction::Simple(SimpleInteraction::new(intr_base)),
pdf,
})
}
fn intersect(&self, ray: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection> {
let [p0, p1, p2] = self.get_points();
let tri_isect = self.intersect_triangle(ray, t_max.unwrap_or(0.), p0, p1, p2)?;
let intr = self.interaction_from_intersection(tri_isect, ray.time, -ray.d);
Some(ShapeIntersection::new(intr, tri_isect.t))
}
fn intersect_p(&self, ray: &Ray, t_max: Option<Float>) -> bool {
let [p0, p1, p2] = self.get_points();
let tri_isect = self.intersect_triangle(ray, t_max.unwrap_or(0.), p0, p1, p2);
tri_isect.is_some()
}
fn pdf(&self, _interaction: &Interaction) -> Float {
1. / self.area()
}
fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float {
let solid_angle = self.solid_angle(ctx.p());
if solid_angle < Self::MIN_SPHERICAL_SAMPLE_AREA
|| solid_angle > Self::MAX_SPHERICAL_SAMPLE_AREA
{
let ray = ctx.spawn_ray(wi);
let Some(isect) = self.intersect(&ray, None) else {
return 0.;
};
let pdf = (1. / self.area())
/ (isect.intr.n().abs_dot(-Normal3f::from(wi))
/ ctx.p().distance_squared(isect.intr.p()));
if pdf.is_infinite() {
return 0.;
}
return pdf;
}
let mut pdf = 1. / solid_angle;
if ctx.ns != Normal3f::zero() {
let [p0, p1, p2] = self.get_points();
let u = invert_spherical_triangle_sample(&[p0, p1, p2], ctx.p(), wi)
.expect("Could not calculate inverse sample");
let rp = ctx.p();
let wi = [
(p0 - rp).normalize(),
(p1 - rp).normalize(),
(p2 - rp).normalize(),
];
let w: [Float; 4] = [
ctx.ns.abs_dot(wi[1].into()).max(0.01),
ctx.ns.abs_dot(wi[1].into()).max(0.01),
ctx.ns.abs_dot(wi[0].into()).max(0.01),
ctx.ns.abs_dot(wi[2].into()).max(0.01),
];
pdf *= bilinear_pdf(u, &w);
}
pdf
}
}