use super::{CameraBase, CameraRay, CameraTrait}; use crate::core::film::FilmTrait; use crate::core::pbrt::{Float, PI}; use crate::core::sampler::CameraSample; use crate::geometry::{Bounds2f, Point2f, Point3f, Ray, Vector3f, spherical_direction}; use crate::spectra::{SampledSpectrum, SampledWavelengths}; use crate::utils::math::{equal_area_square_to_sphere, wrap_equal_area_square}; #[derive(PartialEq)] pub struct EquiRectangularMapping; #[derive(PartialEq)] pub enum Mapping { EquiRectangular(EquiRectangularMapping), } pub struct SphericalCamera { pub base: CameraBase, pub screen: Bounds2f, pub lens_radius: Float, pub focal_distance: Float, pub mapping: Mapping, } impl CameraTrait for SphericalCamera { fn base(&self) -> &CameraBase { &self.base } fn generate_ray( &self, sample: CameraSample, _lamdba: &SampledWavelengths, ) -> Option { // Compute spherical camera ray direction let mut uv = Point2f::new( sample.p_film.x() / self.base().film.full_resolution().x() as Float, sample.p_film.y() / self.base().film.full_resolution().y() as Float, ); let dir: Vector3f; if self.mapping == Mapping::EquiRectangular(EquiRectangularMapping) { // Compute ray direction using equirectangular mapping let theta = PI * uv[1]; let phi = 2. * PI * uv[0]; dir = spherical_direction(theta.sin(), theta.cos(), phi); } else { // Compute ray direction using equal area mapping uv = wrap_equal_area_square(&mut uv); dir = equal_area_square_to_sphere(uv); } std::mem::swap(&mut dir.y(), &mut dir.z()); let ray = Ray::new( Point3f::new(0., 0., 0.), dir, Some(self.sample_time(sample.time)), self.base().medium.clone(), ); Some(CameraRay { ray: self.render_from_camera(&ray, &mut None), weight: SampledSpectrum::default(), }) } }