use super::{ BilinearIntersection, BilinearPatchShape, Bounds3f, DirectionCone, Interaction, Normal3f, Point2f, Point3f, Point3fi, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait, SurfaceInteraction, Transform, Vector3f, }; use crate::core::geometry::{Tuple, VectorLike, spherical_quad_area}; use crate::core::interaction::InteractionTrait; use crate::core::pbrt::{Float, gamma}; use crate::utils::math::{SquareMatrix, clamp, difference_of_products, lerp, quadratic}; use crate::utils::mesh::BilinearPatchMesh; use crate::utils::sampling::{ bilinear_pdf, invert_spherical_rectangle_sample, sample_bilinear, sample_spherical_rectangle, }; use std::sync::Arc; use std::sync::OnceLock; struct PatchData<'a> { mesh: &'a BilinearPatchMesh, p00: Point3f, p10: Point3f, p01: Point3f, p11: Point3f, n: Option<[Normal3f; 4]>, uv: Option<[Point2f; 4]>, } struct IntersectionData { t: Float, u: Float, v: Float, } struct TextureDerivative { duds: Float, dvds: Float, dudt: Float, dvdt: Float, } static BILINEAR_MESHES: OnceLock>> = OnceLock::new(); impl BilinearPatchShape { pub const MIN_SPHERICAL_SAMPLE_AREA: Float = 1e-4; pub fn new(_mesh: BilinearPatchMesh, mesh_index: usize, blp_index: usize) -> Self { let mut bp = BilinearPatchShape { mesh_index, blp_index, area: 0., rectangle: false, }; let (p00, p10, p01, p11) = { let data = bp.get_data(); (data.p00, data.p10, data.p01, data.p11) }; bp.rectangle = bp.is_rectangle(p00, p10, p01, p11); if bp.rectangle { bp.area = p00.distance(p01) + p00.distance(p10); } else { const NA: usize = 3; let mut p = [[Point3f::default(); NA + 1]; NA + 1]; #[allow(clippy::needless_range_loop)] for i in 0..=NA { let u = i as Float / NA as Float; for j in 0..=NA { let v = j as Float / NA as Float; p[i][j] = lerp(u, lerp(v, p00, p01), lerp(v, p10, p11)); } } let mut area = 0.; for i in 0..NA { for j in 0..NA { let diag1 = p[i + 1][j + 1] - p[i][j]; let diag2 = p[i + 1][j] - p[i][j + 1]; let quad_area = 0.5 * diag1.cross(diag2).norm(); area += quad_area; } } bp.area = area; } bp } fn mesh(&self) -> &Arc { let meshes = BILINEAR_MESHES .get() .expect("Mesh has not been initialized"); &meshes[self.mesh_index] } fn get_data(&self) -> PatchData<'_> { let mesh = self.mesh(); let start_index = 4 * self.blp_index; let v = &mesh.vertex_indices[start_index..start_index + 4]; let p00: Point3f = mesh.p[v[0]]; let p10: Point3f = mesh.p[v[1]]; let p01: Point3f = mesh.p[v[2]]; let p11: Point3f = mesh.p[v[3]]; let n = mesh .n .as_ref() .map(|normals| [normals[v[0]], normals[v[1]], normals[v[2]], normals[v[3]]]); let uv = mesh .uv .as_ref() .map(|uvs| [uvs[v[0]], uvs[v[1]], uvs[v[2]], uvs[v[3]]]); PatchData { mesh, p00, p10, p01, p11, n, uv, } } fn is_rectangle(&self, p00: Point3f, p10: Point3f, p01: Point3f, p11: Point3f) -> bool { if p00 == p01 || p01 == p11 || p11 == p10 || p10 == p00 { return false; } let n = Normal3f::from((p10 - p00).cross(p01 - p00).normalize()); if (p11 - p00).normalize().dot(n.into()).abs() > 1e-5 { return false; } let p_center_vec = Vector3f::from(p00 + p01.into() + p10.into() + p11.into()) / 4.; let p_center = Point3f::from(p_center_vec); let d2 = [ p00.distance_squared(p_center), p01.distance_squared(p_center), p10.distance_squared(p_center), p11.distance_squared(p_center), ]; for i in 0..4 { if (d2[i] - d2[0]).abs() / d2[0] > 1e-4 { return false; } } true } fn intersect_bilinear_patch( &self, ray: &Ray, t_max: Float, data: &PatchData, ) -> Option { let a = (data.p10 - data.p00).cross(data.p01 - data.p11).dot(ray.d); let c = (data.p00 - ray.o).cross(ray.d).dot(data.p01 - data.p00); let b = (data.p10 - ray.o).cross(ray.d).dot(data.p11 - data.p10) - (a + c); let (u1, u2) = quadratic(a, b, c)?; let eps = gamma(10) * (ray.o.abs().max_component_value() + ray.d.abs().max_component_value() + data.p00.abs().max_component_value() + data.p10.abs().max_component_value() + data.p01.abs().max_component_value() + data.p11.abs().max_component_value()); let hit1 = self.check_candidate(u1, ray, data); let hit2 = if u1 != u2 { self.check_candidate(u2, ray, data) } else { None }; // Find best hit from candidates [hit1, hit2] .into_iter() .flatten() .filter(|hit| hit.t < t_max && hit.t > eps) .min_by(|a, b| a.t.partial_cmp(&b.t).unwrap()) .map(|best_hit| { BilinearIntersection::new(Point2f::new(best_hit.u, best_hit.v), best_hit.t) }) } fn check_candidate(&self, u: Float, ray: &Ray, data: &PatchData) -> Option { if !(0.0..=1.0).contains(&u) { return None; } let uo: Point3f = lerp(u, data.p00, data.p10); let ud: Point3f = Point3f::from(lerp(u, data.p01, data.p11) - uo); let deltao = uo - ray.o; let perp = ray.d.cross(ud.into()); let p2 = perp.norm_squared(); if p2 == 0. { return None; } let v_det = SquareMatrix::::new([ [deltao.x(), ray.d.x(), perp.x()], [deltao.y(), ray.d.y(), perp.y()], [deltao.z(), ray.d.z(), perp.z()], ]) .determinant(); if !(0.0..=p2).contains(&v_det) { return None; } let t_det = SquareMatrix::::new([ [deltao.x(), ud.x(), perp.x()], [deltao.y(), ud.y(), perp.y()], [deltao.z(), ud.z(), perp.z()], ]) .determinant(); Some(IntersectionData { t: t_det / p2, u, v: v_det / p2, }) } fn interaction_from_intersection( &self, data: &PatchData, uv: Point2f, time: Float, wo: Vector3f, ) -> SurfaceInteraction { // Base geom and derivatives let p = lerp( uv[0], lerp(uv[1], data.p00, data.p01), lerp(uv[1], data.p10, data.p11), ); let mut dpdu = lerp(uv[1], data.p10, data.p11) - lerp(uv[1], data.p00, data.p01); let mut dpdv = lerp(uv[0], data.p01, data.p11) - lerp(uv[0], data.p00, data.p10); // If textured, apply coordinates let (st, derivatives) = self.apply_texture_coordinates(data, uv, &mut dpdu, &mut dpdv); // Compute second moments let n = Normal3f::from(dpdu.cross(dpdv).normalize()); let (mut dndu, mut dndv) = self.calculate_surface_curvature(data, &dpdu, &dpdv, n); if let Some(ref deriv) = derivatives { let dnds = Normal3f::from(dndu * deriv.duds + dndv * deriv.dvds); let dndt = Normal3f::from(dndu * deriv.dudt + dndv * deriv.dvdt); dndu = dnds; dndv = dndt; } let p_abs_sum = data.p00.abs() + Vector3f::from(data.p01.abs()) + Vector3f::from(data.p10.abs()) + Vector3f::from(data.p11.abs()); let p_error = gamma(6) * Vector3f::from(p_abs_sum); let flip_normal = data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness; let pi = Point3fi::new_with_error(p, p_error); let mut isect = SurfaceInteraction::new(pi, st, wo, dpdu, dpdv, dndu, dndv, time, flip_normal); if data.n.is_some() { self.apply_shading_normals(&mut isect, data, uv, derivatives); } isect } fn apply_texture_coordinates( &self, data: &PatchData, uv: Point2f, dpdu: &mut Vector3f, dpdv: &mut Vector3f, ) -> (Point2f, Option) { let Some(uvs) = data.uv else { return (uv, None); }; let uv00 = uvs[0]; let uv01 = uvs[1]; let uv10 = uvs[2]; let uv11 = uvs[3]; // Compute partial derivatives of (u, v) with respect to (s, t) let st = lerp(uv[0], lerp(uv[1], uv00, uv01), lerp(uv[1], uv10, uv11)); let dstdu = lerp(uv[1], uv10, uv11) - lerp(uv[1], uv00, uv01); let dstdv = lerp(uv[0], uv01, uv11) - lerp(uv[0], uv00, uv10); let det = difference_of_products(dstdu[0], dstdv[1], dstdu[1], dstdv[0]); let inv_det = if det == 0.0 { 0.0 } else { 1.0 / det }; let duds = dstdv[1] * inv_det; let dvds = -dstdv[0] * inv_det; let dudt = -dstdu[1] * inv_det; let dvdt = dstdu[0] * inv_det; let dpds = *dpdu * duds + *dpdv * dvds; let mut dpdt = *dpdu * dudt + *dpdv * dvdt; if dpdu.cross(*dpdv).dot(dpds.cross(dpdt)) < 0. { dpdt = -dpdt; } *dpdu = dpds; *dpdv = dpdt; let factors = TextureDerivative { duds, dvds, dudt, dvdt, }; (st, Some(factors)) } fn calculate_base_derivatives( &self, data: &PatchData, uv: Point2f, ) -> (Point3f, Vector3f, Vector3f) { let p = lerp( uv[0], lerp(uv[1], data.p00, data.p01), lerp(uv[1], data.p10, data.p11), ); let dpdu = lerp(uv[1], data.p10, data.p11) - lerp(uv[1], data.p00, data.p01); let dpdv = lerp(uv[0], data.p01, data.p11) - lerp(uv[0], data.p00, data.p10); (p, dpdu, dpdv) } fn calculate_surface_curvature( &self, data: &PatchData, dpdu: &Vector3f, dpdv: &Vector3f, n: Normal3f, ) -> (Normal3f, Normal3f) { let e = dpdu.dot(*dpdu); let f = dpdu.dot(*dpdv); let g = dpdv.dot(*dpdv); let d2pduv = (data.p00 - data.p01) + (data.p11 - data.p10); let d2pduu = Vector3f::zero(); let d2pdvv = Vector3f::zero(); let e_min = n.dot(d2pduu.into()); let f_min = n.dot(d2pduv.into()); let g_min = n.dot(d2pdvv.into()); let egf2 = difference_of_products(e, g, f, f); let inv_egf2 = if egf2 == 0. { 0. } else { 1. / egf2 }; let dndu = Normal3f::from( (f_min * f - e_min * g) * inv_egf2 * *dpdu + (e_min * f - f_min * e) * inv_egf2 * *dpdv, ); let dndv = Normal3f::from( (g_min * f - f_min * g) * inv_egf2 * *dpdu + (f_min * f - g_min * e) * inv_egf2 * *dpdv, ); (dndu, dndv) } fn apply_shading_normals( &self, isect: &mut SurfaceInteraction, data: &PatchData, uv: Point2f, derivatives: Option, ) { let Some(normals) = data.n else { return }; let n00 = normals[1]; let n10 = normals[1]; let n01 = normals[2]; let n11 = normals[3]; let ns = lerp(uv[0], lerp(uv[1], n00, n01), lerp(uv[1], n10, n11)).normalize(); let mut dndu = lerp(uv[1], n10, n11) - lerp(uv[1], n00, n01); let mut dndv = lerp(uv[0], n01, n11) - lerp(uv[0], n00, n10); if let Some(deriv) = derivatives { let dnds = dndu * deriv.duds + dndv * deriv.dvds; let dndt = dndu * deriv.dudt + dndv * deriv.dvdt; dndu = dnds; dndv = dndt; } let r = Transform::rotate_from_to(isect.n().normalize().into(), ns.into()); isect.set_shading_geom( ns, r.apply_to_vector(isect.dpdu), r.apply_to_vector(isect.dpdv), dndu, r.apply_to_normal(dndv), true, ); } fn sample_area_and_pdf(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option { let mut ss = self.sample(u)?; let mut intr_clone = (*ss.intr).clone(); intr_clone.common.time = ctx.time; ss.intr = Arc::new(intr_clone); let mut wi = ss.intr.p() - ctx.p(); let dist_sq = wi.norm_squared(); if dist_sq == 0. { return None; } wi = wi.normalize(); let abs_dot = Vector3f::from(ss.intr.n()).abs_dot(-wi); if abs_dot == 0. { return None; } ss.pdf *= dist_sq / abs_dot; if ss.pdf.is_infinite() { None } else { Some(ss) } } fn sample_parametric_coords(&self, data: &PatchData, u: Point2f) -> (Point2f, Float) { if let Some(image_distrib) = &data.mesh.image_distribution { let (uv, pdf, _) = image_distrib.sample(u); (uv, pdf) } else if !self.rectangle { let w = [ (data.p10 - data.p00).cross(data.p01 - data.p00).norm(), (data.p10 - data.p00).cross(data.p11 - data.p10).norm(), (data.p01 - data.p00).cross(data.p11 - data.p01).norm(), (data.p11 - data.p10).cross(data.p11 - data.p01).norm(), ]; let uv = sample_bilinear(u, &w); let pdf = bilinear_pdf(uv, &w); (uv, pdf) } else { (u, 1.0) } } fn sample_solid_angle( &self, data: &PatchData, ctx: &ShapeSampleContext, u: Point2f, corner_dirs: &[Vector3f; 4], ) -> Option { let mut pdf = 1.; if ctx.ns != Normal3f::zero() { let w = [ 0.01_f32.max(corner_dirs[0].dot(ctx.ns.into()).abs()), 0.01_f32.max(corner_dirs[1].dot(ctx.ns.into()).abs()), 0.01_f32.max(corner_dirs[2].dot(ctx.ns.into()).abs()), 0.01_f32.max(corner_dirs[3].dot(ctx.ns.into()).abs()), ]; let u = sample_bilinear(u, &w); pdf *= bilinear_pdf(u, &w); } let eu = data.p10 - data.p00; let ev = data.p01 - data.p00; let (p, quad_pdf) = sample_spherical_rectangle(ctx.p(), data.p00, eu, ev, u); pdf *= quad_pdf?; // Compute (u, v) and surface normal for sampled points on rectangle let uv = Point2f::new( (p - data.p00).dot(eu) / data.p10.distance_squared(data.p00), (p - data.p00).dot(ev) / data.p01.distance_squared(data.p00), ); let n = self.compute_sampled_normal(data, &eu, &ev, uv); let st = data.uv.map_or(uv, |uvs| { lerp( uv[0], lerp(uv[1], uvs[0], uvs[1]), lerp(uv[1], uvs[2], uvs[3]), ) }); let pi = Point3fi::new_from_point(p); let mut intr = SurfaceInteraction::new_simple(pi, n, st); intr.common.time = ctx.time; Some(ShapeSample { intr: Arc::new(intr), pdf, }) } fn compute_sampled_normal( &self, data: &PatchData, dpdu: &Vector3f, dpdv: &Vector3f, uv: Point2f, ) -> Normal3f { let mut n = Normal3f::from(dpdu.cross(*dpdv).normalize()); if let Some(normals) = data.n { // Apply interpolated shading normal to orient the geometric normal let ns = lerp( uv[0], lerp(uv[1], normals[0], normals[2]), lerp(uv[1], normals[1], normals[3]), ); n = n.face_forward(ns.into()); } else if data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness { n = -n; } n } } impl ShapeTrait for BilinearPatchShape { #[inline] fn area(&self) -> Float { self.area } #[inline] fn normal_bounds(&self) -> DirectionCone { let data = self.get_data(); if data.p00 == data.p10 || data.p10 == data.p11 || data.p11 == data.p01 || data.p01 == data.p00 { let dpdu = lerp(0.5, data.p10, data.p11) - lerp(0.5, data.p00, data.p01); let dpdv = lerp(0.5, data.p01, data.p11) - lerp(0.5, data.p00, data.p10); let mut n = Normal3f::from(dpdu.cross(dpdv).normalize()); if let Some(normals) = data.n { let interp_n = (normals[0] + normals[1] + normals[2] + normals[3]) / 4.; n = n.face_forward(interp_n.into()); } else if data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness { n *= -1.; } return DirectionCone::new_from_vector(Vector3f::from(n)); } // Compute bilinear patch normals n10, n01, and n11 let mut n00 = Normal3f::from((data.p10 - data.p00).cross(data.p01 - data.p00).normalize()); let mut n10 = Normal3f::from((data.p11 - data.p10).cross(data.p00 - data.p10).normalize()); let mut n01 = Normal3f::from((data.p00 - data.p01).cross(data.p11 - data.p01).normalize()); let mut n11 = Normal3f::from((data.p01 - data.p11).cross(data.p10 - data.p11).normalize()); if let Some(normals) = data.n { n00 = n00.face_forward(normals[0].into()); n10 = n10.face_forward(normals[1].into()); n01 = n01.face_forward(normals[2].into()); n11 = n11.face_forward(normals[3].into()); } else if data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness { n00 = -n00; n10 = -n10; n01 = -n01; n11 = -n11; } // Compute average normal and return normal bounds for patch let n_avg = (n00 + n10 + n01 + n11).normalize(); let cos_theta = n_avg .dot(n00) .min(n_avg.dot(n10)) .min(n_avg.dot(n01)) .min(n_avg.dot(n11)); DirectionCone::new(n_avg.into(), clamp(cos_theta, -1., 1.)) } #[inline] fn bounds(&self) -> Bounds3f { let data = self.get_data(); Bounds3f::from_points(data.p00, data.p01).union(Bounds3f::from_points(data.p10, data.p11)) } #[inline] fn intersect(&self, ray: &Ray, t_max: Option) -> Option { let t_max_val = t_max?; let data = self.get_data(); if let Some(bilinear_hit) = self.intersect_bilinear_patch(ray, t_max_val, &data) { let intr = self.interaction_from_intersection(&data, bilinear_hit.uv, ray.time, -ray.d); Some(ShapeIntersection { intr, t_hit: bilinear_hit.t, }) } else { None } } #[inline] fn intersect_p(&self, ray: &Ray, t_max: Option) -> bool { let t_max_val = t_max.unwrap_or(Float::INFINITY); let data = self.get_data(); self.intersect_bilinear_patch(ray, t_max_val, &data) .is_some() } #[inline] fn sample(&self, u: Point2f) -> Option { let data = self.get_data(); // Sample bilinear patch parametric coordinate (u, v) let (uv, pdf) = self.sample_parametric_coords(&data, u); // Compute bilinear patch geometric quantities at sampled (u, v) let (p, dpdu, dpdv) = self.calculate_base_derivatives(&data, uv); if dpdu.norm_squared() == 0. || dpdv.norm_squared() == 0. { return None; } // Compute surface normal for sampled bilinear patch (u, v) let n = self.compute_sampled_normal(&data, &dpdu, &dpdv, uv); let st = data.uv.map_or(uv, |patch_uvs| { lerp( uv[0], lerp(uv[1], patch_uvs[0], patch_uvs[1]), lerp(uv[1], patch_uvs[2], patch_uvs[3]), ) }); let p_abs_sum = data.p00.abs() + Vector3f::from(data.p01.abs()) + Vector3f::from(data.p10.abs()) + Vector3f::from(data.p11.abs()); let p_error = gamma(6) * Vector3f::from(p_abs_sum); let pi = Point3fi::new_with_error(p, p_error); Some(ShapeSample { intr: Arc::new(SurfaceInteraction::new_simple(pi, n, st)), pdf: pdf / dpdu.cross(dpdv).norm(), }) } #[inline] fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option { let data = self.get_data(); let v00 = (data.p00 - ctx.p()).normalize(); let v10 = (data.p10 - ctx.p()).normalize(); let v01 = (data.p01 - ctx.p()).normalize(); let v11 = (data.p11 - ctx.p()).normalize(); let use_area_sampling = self.rectangle || data.mesh.image_distribution.is_some() || spherical_quad_area(v00, v10, v11, v01) <= Self::MIN_SPHERICAL_SAMPLE_AREA; if use_area_sampling { self.sample_area_and_pdf(ctx, u) } else { self.sample_solid_angle(&data, ctx, u, &[v00, v10, v01, v11]) } } #[inline] fn pdf(&self, intr: &Interaction) -> Float { let Interaction::Surface(si) = intr else { return 0.0; }; let data = self.get_data(); let uv = if let Some(uvs) = &data.mesh.uv { Point2f::invert_bilinear(si.uv, uvs) } else { si.uv }; let param_pdf = if let Some(image_distrib) = &data.mesh.image_distribution { image_distrib.pdf(uv) } else if self.rectangle { let w = [ (data.p10 - data.p00).cross(data.p01 - data.p00).norm(), (data.p10 - data.p00).cross(data.p11 - data.p10).norm(), (data.p01 - data.p00).cross(data.p11 - data.p01).norm(), (data.p11 - data.p10).cross(data.p11 - data.p01).norm(), ]; bilinear_pdf(uv, &w) } else { 1. }; let (_, dpdu, dpdv) = self.calculate_base_derivatives(&data, uv); let cross = dpdu.cross(dpdv).norm(); if cross == 0. { 0. } else { param_pdf / cross } } #[inline] fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float { let ray = ctx.spawn_ray(wi); let Some(isect) = self.intersect(&ray, None) else { return 0.; }; let data = self.get_data(); let v00 = (data.p00 - ctx.p()).normalize(); let v10 = (data.p10 - ctx.p()).normalize(); let v01 = (data.p01 - ctx.p()).normalize(); let v11 = (data.p11 - ctx.p()).normalize(); let use_area_sampling = !self.rectangle || data.mesh.image_distribution.is_some() || spherical_quad_area(v00, v10, v01, v11) <= Self::MIN_SPHERICAL_SAMPLE_AREA; if use_area_sampling { let intr_wrapper = Interaction::Surface(isect.intr.clone()); let isect_pdf = self.pdf(&intr_wrapper); let distsq = ctx.p().distance_squared(isect.intr.p()); let absdot = Vector3f::from(isect.intr.n()).abs_dot(-wi); if absdot == 0. { return 0.; } let pdf = isect_pdf * distsq / absdot; if pdf.is_infinite() { 0. } else { pdf } } else { let mut pdf = 1. / spherical_quad_area(v00, v10, v01, v11); if ctx.ns != Normal3f::zero() { let w = [ 0.01_f32.max(v00.dot(ctx.ns.into()).abs()), 0.01_f32.max(v10.dot(ctx.ns.into()).abs()), 0.01_f32.max(v01.dot(ctx.ns.into()).abs()), 0.01_f32.max(v11.dot(ctx.ns.into()).abs()), ]; let u = invert_spherical_rectangle_sample( ctx.p(), data.p00, data.p10 - data.p00, data.p01 - data.p00, isect.intr.p(), ); pdf *= bilinear_pdf(u, &w); } pdf } } }