use crate::core::image::Image; use crate::utils::Arena; use crate::utils::containers::Array2D; use shared::Float; use shared::core::geometry::{Point2i, Vector2f, Vector2i}; use shared::utils::Ptr; use shared::utils::sampling::{ AliasTable, Bin, DevicePiecewiseConstant1D, DevicePiecewiseConstant2D, DeviceSummedAreaTable, DeviceWindowedPiecewiseConstant2D, PiecewiseLinear2D, }; use std::sync::Arc; #[derive(Debug, Clone)] pub struct PiecewiseConstant1D { func: Box<[Float]>, cdf: Box<[Float]>, pub device: DevicePiecewiseConstant1D, } impl PiecewiseConstant1D { // Constructors pub fn new(f: &[Float]) -> Self { Self::new_with_bounds(f.to_vec(), 0.0, 1.0) } pub fn to_shared(&self, arena: &mut Arena) -> DevicePiecewiseConstant1D { let (func_ptr, _) = arena.alloc_slice(&self.func); let (cdf_ptr, _) = arena.alloc_slice(&self.cdf); DevicePiecewiseConstant1D { func: func_ptr, cdf: cdf_ptr, func_integral: self.func_integral, n: self.func.len() as u32, min: self.min, max: self.max, } } pub fn from_func(f: F, min: Float, max: Float, n: usize) -> Self where F: Fn(Float) -> Float, { let delta = (max - min) / n as Float; let values: Vec = (0..n) .map(|i| { let x = min + (i as Float + 0.5) * delta; f(x) }) .collect(); Self::new_with_bounds(values, min, max) } pub fn new_with_bounds(f: Vec, min: Float, max: Float) -> Self { let n = f.len(); let mut cdf = Vec::with_capacity(n + 1); cdf.push(0.0); let delta = (max - min) / n as Float; for i in 0..n { cdf.push(cdf[i] + f[i] * delta); } let func_integral = cdf[n]; if func_integral > 0.0 { for c in &mut cdf { *c /= func_integral; } } // Convert to boxed slices (no more reallocation possible) let func: Box<[Float]> = f.into_boxed_slice(); let cdf: Box<[Float]> = cdf.into_boxed_slice(); let device = DevicePiecewiseConstant1D { func: func.as_ptr().into(), cdf: cdf.as_ptr().into(), min, max, n: n as u32, func_integral, }; Self { func, cdf, device } } // Accessors pub fn min(&self) -> Float { self.device.min } pub fn max(&self) -> Float { self.device.max } pub fn n(&self) -> usize { self.device.n as usize } pub fn integral(&self) -> Float { self.device.func_integral } pub fn func(&self) -> &[Float] { &self.func } pub fn cdf(&self) -> &[Float] { &self.cdf } } impl std::ops::Deref for PiecewiseConstant1D { type Target = DevicePiecewiseConstant1D; fn deref(&self) -> &Self::Target { &self.device } } #[derive(Debug, Clone)] pub struct PiecewiseConstant2D { pub conditionals: Vec, pub marginal: PiecewiseConstant1D, pub conditional_devices: Box<[DevicePiecewiseConstant1D]>, pub device: DevicePiecewiseConstant2D, } impl std::ops::Deref for PiecewiseConstant2D { type Target = DevicePiecewiseConstant2D; fn deref(&self) -> &Self::Target { &self.device } } impl PiecewiseConstant2D { pub fn new(data: &[Float], n_u: usize, n_v: usize) -> Self { assert_eq!(data.len(), n_u * n_v); // Build conditional distributions p(u|v) for each row let mut conditionals = Vec::with_capacity(n_v); let mut marginal_func = Vec::with_capacity(n_v); for v in 0..n_v { let row_start = v * n_u; let row: Vec = data[row_start..row_start + n_u].to_vec(); let conditional = PiecewiseConstant1D::new_with_bounds(row, 0.0, 1.0); marginal_func.push(conditional.integral()); conditionals.push(conditional); } // Build marginal distribution p(v) let marginal = PiecewiseConstant1D::new_with_bounds(marginal_func, 0.0, 1.0); // Create array of device structs let conditional_devices: Box<[DevicePiecewiseConstant1D]> = conditionals .iter() .map(|c| c.device) .collect::>() .into_boxed_slice(); let device = DevicePiecewiseConstant2D { conditionals: conditional_devices.as_ptr().into(), marginal: marginal.device, n_u: n_u as u32, n_v: n_v as u32, }; Self { conditionals, marginal, conditional_devices, device, } } pub fn from_image(image: &Image) -> Self { let res = image.resolution(); let n_u = res.x() as usize; let n_v = res.y() as usize; let mut data = Vec::with_capacity(n_u * n_v); for v in 0..n_v { for u in 0..n_u { let p = Point2i::new(u as i32, v as i32); let luminance = image.get_channels(p).average(); data.push(luminance); } } Self::new(&data, n_u, n_v) } pub fn integral(&self) -> Float { self.marginal.integral() } } struct PiecewiseLinear2DStorage { data: Vec, marginal_cdf: Vec, conditional_cdf: Vec, param_values: [Vec; N], } pub struct PiecewiseLinear2DHost { pub view: PiecewiseLinear2D, _storage: Arc>, } impl PiecewiseLinear2DHost { pub fn new( data: &[Float], x_size: i32, y_size: i32, param_res: [usize; N], param_values: [&[Float]; N], normalize: bool, build_cdf: bool, ) -> Self { if build_cdf && !normalize { panic!("PiecewiseLinear2D::new: build_cdf implies normalize=true"); } let size = Vector2i::new(x_size, y_size); let inv_patch_size = Vector2f::new(1. / (x_size - 1) as Float, 1. / (y_size - 1) as Float); let mut param_size = [0u32; N]; let mut param_strides = [0u32; N]; let param_values = std::array::from_fn(|i| param_values[i].to_vec()); let mut slices: u32 = 1; for i in (0..N).rev() { if param_res[i] < 1 { panic!("PiecewiseLinear2D::new: parameter resolution must be >= 1!"); } param_size[i] = param_res[i] as u32; param_strides[i] = if param_res[i] > 1 { slices } else { 0 }; slices *= param_size[i]; } let n_values = (x_size * y_size) as usize; let mut new_data = vec![0.0; slices as usize * n_values]; let mut marginal_cdf = if build_cdf { vec![0.0; slices as usize * y_size as usize] } else { Vec::new() }; let mut conditional_cdf = if build_cdf { vec![0.0; slices as usize * n_values] } else { Vec::new() }; let mut data_offset = 0; for slice in 0..slices as usize { let slice_offset = slice * n_values; let current_data = &data[data_offset..data_offset + n_values]; let mut sum = 0.; // Construct conditional CDF if normalize { for y in 0..(y_size - 1) { for x in 0..(x_size - 1) { let i = (y * x_size + x) as usize; let v00 = current_data[i] as f64; let v10 = current_data[i + 1] as f64; let v01 = current_data[i + x_size as usize] as f64; let v11 = current_data[i + 1 + x_size as usize] as f64; sum += 0.25 * (v00 + v10 + v01 + v11); } } } let normalization = if normalize && sum > 0.0 { 1.0 / sum as Float } else { 1.0 }; for k in 0..n_values { new_data[slice_offset + k] = current_data[k] * normalization; } if build_cdf { let marginal_slice_offset = slice * y_size as usize; // Construct marginal CDF for y in 0..y_size as usize { let mut cdf_sum = 0.0; let i_base = y * x_size as usize; conditional_cdf[slice_offset + i_base] = 0.0; for x in 0..(x_size - 1) as usize { let i = i_base + x; cdf_sum += 0.5 * (new_data[slice_offset + i] + new_data[slice_offset + i + 1]); conditional_cdf[slice_offset + i + 1] = cdf_sum; } } // Construct marginal CDF marginal_cdf[marginal_slice_offset] = 0.0; let mut marginal_sum = 0.0; for y in 0..(y_size - 1) as usize { let cdf1 = conditional_cdf[slice_offset + (y + 1) * x_size as usize - 1]; let cdf2 = conditional_cdf[slice_offset + (y + 2) * x_size as usize - 1]; marginal_sum += 0.5 * (cdf1 + cdf2); marginal_cdf[marginal_slice_offset + y + 1] = marginal_sum; } } data_offset += n_values; } let view = PiecewiseLinear2D { size, inv_patch_size, param_size, param_strides, param_values: param_values.each_ref().map(|x| x.as_ptr().into()), data: Ptr::null(), marginal_cdf: marginal_cdf.as_ptr().into(), conditional_cdf: conditional_cdf.as_ptr().into(), }; let storage = Arc::new(PiecewiseLinear2DStorage { data: new_data, marginal_cdf, conditional_cdf, param_values, }); let mut final_view = view; final_view.data = storage.data.as_ptr().into(); final_view.marginal_cdf = storage.marginal_cdf.as_ptr().into(); final_view.conditional_cdf = storage.conditional_cdf.as_ptr().into(); for i in 0..N { final_view.param_values[i] = storage.param_values[i].as_ptr().into(); } Self { view: final_view, _storage: storage, } } } #[derive(Debug, Clone)] pub struct AliasTableHost { pub view: AliasTable, _storage: Vec, } impl AliasTableHost { pub fn new(weights: &[Float]) -> Self { let n = weights.len(); if n == 0 { return Self { view: AliasTable { bins: Ptr::null(), size: 0, }, _storage: Vec::new(), }; } let sum: f64 = weights.iter().map(|&w| w as f64).sum(); assert!(sum > 0.0, "Sum of weights must be positive"); let mut bins = Vec::with_capacity(n); for &w in weights { bins.push(Bin { p: (w as f64 / sum) as Float, q: 0.0, alias: 0, }); } struct Outcome { p_hat: f64, index: usize, } let mut under = Vec::with_capacity(n); let mut over = Vec::with_capacity(n); for (i, bin) in bins.iter().enumerate() { let p_hat = (bin.p as f64) * (n as f64); if p_hat < 1.0 { under.push(Outcome { p_hat, index: i }); } else { over.push(Outcome { p_hat, index: i }); } } while !under.is_empty() && !over.is_empty() { let un = under.pop().unwrap(); let ov = over.pop().unwrap(); bins[un.index].q = un.p_hat as Float; bins[un.index].alias = ov.index as u32; let p_excess = un.p_hat + ov.p_hat - 1.0; if p_excess < 1.0 { under.push(Outcome { p_hat: p_excess, index: ov.index, }); } else { over.push(Outcome { p_hat: p_excess, index: ov.index, }); } } while let Some(ov) = over.pop() { bins[ov.index].q = 1.0; bins[ov.index].alias = ov.index as u32; } while let Some(un) = under.pop() { bins[un.index].q = 1.0; bins[un.index].alias = un.index as u32; } let view = AliasTable { bins: bins.as_ptr().into(), size: bins.len() as u32, }; Self { view, _storage: bins, } } } #[derive(Clone, Debug)] pub struct SummedAreaTable { pub device: DeviceSummedAreaTable, sum: Array2D, } impl std::ops::Deref for SummedAreaTable { type Target = DeviceSummedAreaTable; fn deref(&self) -> &Self::Target { &self.device } } impl SummedAreaTable { pub fn new(values: &Array2D) -> Self { let width = values.x_size() as i32; let height = values.y_size() as i32; let mut sum = Array2D::::new_dims(width, height); sum[(0, 0)] = values[(0, 0)] as f64; for x in 1..width { sum[(x, 0)] = values[(x, 0)] as f64 + sum[(x - 1, 0)]; } for y in 1..height { sum[(0, y)] = values[(0, y)] as f64 + sum[(0, y - 1)]; } for y in 1..height { for x in 1..width { let term = values[(x, y)] as f64; let left = sum[(x - 1, y)]; let up = sum[(x, y - 1)]; let diag = sum[(x - 1, y - 1)]; sum[(x, y)] = term + left + up - diag; } } let device = DeviceSummedAreaTable { sum: *sum }; Self { device, sum } } } #[derive(Clone, Debug)] pub struct WindowedPiecewiseConstant2D { pub device: DeviceWindowedPiecewiseConstant2D, sat: DeviceSummedAreaTable, func: Array2D, } impl std::ops::Deref for WindowedPiecewiseConstant2D { type Target = DeviceWindowedPiecewiseConstant2D; fn deref(&self) -> &Self::Target { &self.device } } impl WindowedPiecewiseConstant2D { pub fn new(func: Array2D) -> Self { let sat = *SummedAreaTable::new(&func); let device = DeviceWindowedPiecewiseConstant2D { sat, func: *func }; Self { sat, func, device } } }