Missing SpectrumTextureTrait implementations, placeholders for now. Continuing fixing errors

This commit is contained in:
pingu 2026-01-23 15:23:01 +00:00
parent 14418472d5
commit b6b17a8c7e
60 changed files with 1306 additions and 612 deletions

View file

@ -428,9 +428,7 @@ impl BxDFTrait for NormalizedFresnelBxDF {
BxDFFlags::REFLECTION | BxDFFlags::DIFFUSE
}
fn regularize(&mut self) {
return;
}
fn regularize(&mut self) {}
fn as_any(&self) -> &dyn Any {
self
@ -462,9 +460,7 @@ impl BxDFTrait for EmptyBxDF {
BxDFFlags::UNSET
}
fn regularize(&mut self) {
return;
}
fn regularize(&mut self) {}
fn as_any(&self) -> &dyn Any {
self

View file

@ -117,9 +117,9 @@ pub struct CameraBase {
pub medium: Ptr<Medium>,
}
#[enum_dispatch(CameraTrait)]
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[enum_dispatch(CameraTrait)]
pub enum Camera {
Perspective(PerspectiveCamera),
Orthographic(OrthographicCamera),
@ -141,7 +141,7 @@ pub trait CameraTrait {
);
}
}
&*self.base().film
&self.base().film
}
fn sample_time(&self, u: Float) -> Float {

View file

@ -116,9 +116,9 @@ impl RGBFilm {
let pixel = &self.pixels[p_film];
for c in 0..3 {
pixel.rgb_sum[c].add((weight * rgb[c as u32]) as f32);
pixel.rgb_sum[c].add(weight * rgb[c as u32]);
}
pixel.weight_sum.add(weight as f32);
pixel.weight_sum.add(weight);
}
pub fn add_splat(&mut self, p: Point2f, l: SampledSpectrum, lambda: &SampledWavelengths) {
@ -353,6 +353,9 @@ pub struct SpectralFilm {
pub bucket_splats: *mut AtomicFloat,
}
unsafe impl Send for SpectralFilm {}
unsafe impl Sync for SpectralFilm {}
impl SpectralFilm {
pub fn base(&self) -> &FilmBase {
&self.base
@ -474,7 +477,7 @@ pub struct FilmBase {
pub pixel_bounds: Bounds2i,
pub filter: Filter,
pub diagonal: Float,
pub sensor: *const PixelSensor,
pub sensor: Ptr<PixelSensor>,
}
#[repr(C)]
@ -486,6 +489,9 @@ pub enum Film {
Spectral(SpectralFilm),
}
unsafe impl Send for Film {}
unsafe impl Sync for Film {}
impl Film {
pub fn base(&self) -> &FilmBase {
match self {

View file

@ -179,7 +179,7 @@ impl ImageAccess for DeviceImage {
self.base().encoding.to_linear_scalar(raw_u8)
}
Pixels::F16(ptr) => {
let half_bits: u16 = *ptr.add(offset as usize) as u16;
let half_bits: u16 = *ptr.add(offset as usize);
f16_to_f32(half_bits)
}
Pixels::F32(ptr) => *ptr.add(offset as usize),

View file

@ -23,11 +23,11 @@ pub trait PrimitiveTrait {
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct GeometricPrimitive {
shape: Ptr<Shape>,
material: Ptr<Material>,
area_light: Ptr<Light>,
medium_interface: MediumInterface,
alpha: Ptr<GPUFloatTexture>,
pub shape: Ptr<Shape>,
pub material: Ptr<Material>,
pub area_light: Ptr<Light>,
pub medium_interface: MediumInterface,
pub alpha: Ptr<GPUFloatTexture>,
}
unsafe impl Send for GeometricPrimitive {}
@ -91,8 +91,22 @@ impl PrimitiveTrait for GeometricPrimitive {
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct SimplePrimitive {
shape: Ptr<Shape>,
material: Ptr<Material>,
pub shape: Ptr<Shape>,
pub material: Ptr<Material>,
}
impl PrimitiveTrait for SimplePrimitive {
fn bounds(&self) -> Bounds3f {
todo!()
}
fn intersect(&self, r: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection> {
todo!()
}
fn intersect_p(&self, r: &Ray, t_max: Option<Float>) -> bool {
todo!()
}
}
#[derive(Debug, Clone)]
@ -221,6 +235,7 @@ impl PrimitiveTrait for KdTreeAggregate {
#[derive(Clone, Debug)]
#[enum_dispatch(PrimitiveTrait)]
pub enum Primitive {
Simple(SimplePrimitive),
Geometric(GeometricPrimitive),
Transformed(TransformedPrimitive),
Animated(AnimatedPrimitive),

View file

@ -350,7 +350,6 @@ pub enum GPUFloatTexture {
FBm(FBmTexture),
Windy(WindyTexture),
Wrinkled(WrinkledTexture),
Ptex(GPUFloatPtexTexture),
Image(GPUFloatImageTexture),
Mix(GPUFloatMixTexture),
}
@ -367,7 +366,6 @@ impl GPUFloatTexture {
GPUFloatTexture::FBm(t) => t.evaluate(ctx),
GPUFloatTexture::Windy(t) => t.evaluate(ctx),
GPUFloatTexture::Wrinkled(t) => t.evaluate(ctx),
GPUFloatTexture::Ptex(t) => t.evaluate(ctx),
GPUFloatTexture::Image(t) => t.evaluate(ctx),
GPUFloatTexture::Mix(t) => t.evaluate(ctx),
}

View file

@ -392,7 +392,11 @@ impl FilmBaseHost for FilmBase {
}
}
pub trait FilmHost {
#[enum_dispatch]
pub trait FilmTrait: Sync {
fn base(&self) -> &FilmBase;
fn get_pixel_rgb(&self, p: Point2i, splat_scale: Option<Float>) -> RGB;
fn get_filename(&self) -> &str;
fn write_image(&self, metadata: &ImageMetadata, splat_scale: Float) {
let image = self.get_image(metadata, splat_scale);
image
@ -472,7 +476,32 @@ pub trait FilmHost {
image
}
fn get_filename(&self) -> &str;
}
impl FilmTrait for Film {
fn base(&self) -> &FilmBase {
match self {
Film::RGB(f) => &f.base,
Film::GBuffer(f) => &f.base,
Film::Spectral(f) => &f.base,
}
}
fn get_pixel_rgb(&self, p: Point2i, splat_scale: Option<Float>) -> RGB {
match self {
Film::RGB(f) => f.get_pixel_rgb(p, splat_scale),
Film::GBuffer(f) => f.get_pixel_rgb(p, splat_scale),
Film::Spectral(f) => f.get_pixel_rgb(p, splat_scale),
}
}
fn get_filename(&self) -> &str {
match self {
Film::RGB(f) => &f.filename,
Film::GBuffer(f) => &f.filename,
Film::Spectral(f) => &f.filename,
}
}
}
pub trait FilmFactory {

View file

@ -1,3 +1,4 @@
use crate::utils::containers::Array2D;
use anyhow::Result;
use half::f16;
use shared::Float;
@ -5,7 +6,6 @@ use shared::core::color::ColorEncoding;
use shared::core::color::LINEAR;
use shared::core::geometry::{Bounds2f, Point2f, Point2i};
use shared::core::image::{DeviceImage, ImageBase, PixelFormat, Pixels, WrapMode, WrapMode2D};
use shared::utils::containers::DeviceArray2D;
use shared::utils::math::square;
use smallvec::{SmallVec, smallvec};
use std::ops::{Deref, DerefMut};
@ -470,14 +470,14 @@ impl Image {
Self::from_storage(new_storage, res, new_names, self.encoding())
}
pub fn get_sampling_distribution<F>(&self, dxd_a: F, domain: Bounds2f) -> DeviceArray2D<Float>
pub fn get_sampling_distribution<F>(&self, dxd_a: F, domain: Bounds2f) -> Array2D<Float>
where
F: Fn(Point2f) -> Float + Sync + Send,
{
let width = self.resolution().x();
let height = self.resolution().y();
let mut dist = DeviceArray2D::new_with_dims(width as usize, height as usize);
let mut dist = Array2D::new_dims(width, height);
dist.values
.par_chunks_mut(width as usize)
@ -500,7 +500,7 @@ impl Image {
dist
}
pub fn get_sampling_distribution_uniform(&self) -> DeviceArray2D<Float> {
pub fn get_sampling_distribution_uniform(&self) -> Array2D<Float> {
let default_domain = Bounds2f::from_points(Point2f::new(0.0, 0.0), Point2f::new(1.0, 1.0));
self.get_sampling_distribution(|_| 1.0, default_domain)

View file

@ -1,20 +1,21 @@
use shared::core::light::Light;
use crate::core::spectrum::SPECTRUM_CACHE;
use crate::core::texture::FloatTexture;
use crate::spectra::DenselySampledSpectrumBuffer;
use crate::utils::containers::InternCache;
use crate::utils::{Arena, FileLoc, ParameterDictionary};
use anyhow::{Result, anyhow};
use shared::core::camera::CameraTransform;
use shared::core::light::Light;
use shared::core::medium::Medium;
use shared::core::shape::Shape;
use shared::core::spectrum::Spectrum;
use shared::lights::*;
use shared::spectra::{DenselySampledSpectrum, RGBColorSpace};
use shared::spectra::RGBColorSpace;
use shared::utils::Transform;
pub fn lookup_spectrum(s: &Spectrum) -> DenselySampledSpectrum {
pub fn lookup_spectrum(s: &Spectrum) -> DenselySampledSpectrumBuffer {
let cache = SPECTRUM_CACHE.get_or_init(InternCache::new);
let dense_spectrum = DenselySampledSpectrum::from_spectrum(s);
let dense_spectrum = DenselySampledSpectrumBuffer::from_spectrum(s);
cache.lookup(dense_spectrum).as_ref()
}

View file

@ -40,42 +40,46 @@ impl MaterialFactory for Material {
) -> Result<Material> {
match name {
"diffuse" => {
DiffuseMaterial::create(parameters, normal_map, named_materials, loc, arena)?
DiffuseMaterial::create(parameters, normal_map, &named_materials, &loc, arena)
}
"coateddiffuse" => {
CoatedDiffuseMaterial::create(parameters, normal_map, named_materials, loc, arena)?
CoatedDiffuseMaterial::create(parameters, normal_map, &named_materials, &loc, arena)
}
"coatedconductor" => CoatedConductorMaterial::create(
parameters,
normal_map,
named_materials,
loc,
&named_materials,
&loc,
arena,
)?,
),
"diffusetransmission" => DiffuseTransmissionMaterial::create(
parameters,
normal_map,
named_materials,
loc,
&named_materials,
&loc,
arena,
)?,
),
"dielectric" => {
DielectricMaterial::create(parameters, normal_map, named_materials, loc, arena)?
DielectricMaterial::create(parameters, normal_map, &named_materials, &loc, arena)
}
"thindielectric" => {
ThinDielectricMaterial::create(parameters, normal_map, named_materials, loc, arena)?
}
"hair" => HairMaterial::create(parameters, normal_map, named_materials, loc, arena)?,
"thindielectric" => ThinDielectricMaterial::create(
parameters,
normal_map,
&named_materials,
&loc,
arena,
),
"hair" => HairMaterial::create(parameters, normal_map, &named_materials, &loc, arena),
"conductor" => {
ConductorMaterial::create(parameters, normal_map, named_materials, loc, arena)?
ConductorMaterial::create(parameters, normal_map, &named_materials, &loc, arena)
}
"measured" => {
MeasuredMaterial::create(parameters, normal_map, named_materials, loc, arena)?
MeasuredMaterial::create(parameters, normal_map, &named_materials, &loc, arena)
}
"subsurface" => {
SubsurfaceMaterial::create(parameters, normal_map, named_materials, loc, arena)?
SubsurfaceMaterial::create(parameters, normal_map, &named_materials, &loc, arena)
}
"mix" => MixMaterial::create(parameters, normal_map, named_materials, loc, arena)?,
"mix" => MixMaterial::create(parameters, normal_map, &named_materials, &loc, arena),
_ => Err(anyhow!("Material type '{}' unknown at {}", $name, $loc)),
}

View file

@ -1,7 +1,7 @@
use crate::spectra::dense::DenselySampledSpectrumBuffer;
use shared::core::geometry::{Bounds3f, Point3i};
use shared::core::medium::{GridMedium, HGPhaseFunction, HomogeneousMedium, RGBGridMedium};
use shared::core::spectrum::Spectrum;
use shared::core::spectrum::{Spectrum, SpectrumTrait};
use shared::spectra::{DenselySampledSpectrum, RGBIlluminantSpectrum, RGBUnboundedSpectrum};
use shared::utils::Transform;
use shared::utils::containers::SampledGrid;

View file

@ -8,6 +8,7 @@ pub mod image;
pub mod light;
pub mod material;
pub mod medium;
pub mod primitive;
pub mod sampler;
pub mod sampler;
pub mod scene;

40
src/core/primitive.rs Normal file
View file

@ -0,0 +1,40 @@
use shared::core::{
light::Light,
material::{self, Material},
medium::MediumInterface,
primitive::{GeometricPrimitive, SimplePrimitive},
shape::Shape,
};
use shared::utils::Ptr;
use crate::core::texture::FloatTexture;
pub trait CreateSimplePrimitive {
fn new(shape: Ptr<Shape>, material: Ptr<Material>) -> SimplePrimitive {
SimplePrimitive { shape, material }
}
}
impl CreateSimplePrimitive for SimplePrimitive {}
pub trait CreateGeometricPrimitive {
fn new(
shape: Ptr<Shape>,
material: Ptr<Material>,
area_light: Ptr<Light>,
medium_interface: MediumInterface,
alpha: Ptr<GPUFloatTexture>,
) -> GeometricPrimitive {
GeometricPrimitive {
shape,
material,
area_light,
medium_interface,
alpha,
}
}
}
impl CreateGeometricPrimitive for GeometricPrimitive {}

View file

@ -3,7 +3,7 @@ use crate::utils::{FileLoc, ParameterDictionary};
use anyhow::{Result, anyhow};
use shared::core::geometry::Point2i;
use shared::core::sampler::{
HaltonSampler, IndependentSampler, PaddedSobolSampler, Sampler, SobolSampler,
HaltonSampler, IndependentSampler, PaddedSobolSampler, Sampler, SamplerTrait, SobolSampler,
StratifiedSampler, ZSobolSampler,
};

View file

@ -553,7 +553,7 @@ impl ParserTarget for BasicSceneBuilder {
&mut self.spectrum_texture_names
};
if names.contains(name) {
if names.contains(&name) {
self.error_exit_deferred(&loc, &format!("Redefining texture \"{}\".", name));
return;
}
@ -561,7 +561,7 @@ impl ParserTarget for BasicSceneBuilder {
}
let base = SceneEntity {
name: tex_name,
name: tex_name.to_string(),
parameters: dict,
loc,
};
@ -578,9 +578,9 @@ impl ParserTarget for BasicSceneBuilder {
}
fn material(&mut self, name: &str, params: &ParsedParameterVector, loc: FileLoc) {
self.verify_world("material", loc);
self.verify_world("material", &loc);
let entity = SceneEntity {
name,
name: name.to_string(),
loc,
parameters: params,
};

View file

@ -1,9 +1,14 @@
use super::entities::*;
use super::state::*;
use crate::core::camera::CameraFactory;
use crate::core::filter::FilterFactory;
use crate::core::image::{Image, io::ImageIO};
use crate::core::material::MaterialFactory;
use crate::core::primitive::{CreateGeometricPrimitive, CreateSimplePrimitive};
use crate::core::sampler::SamplerFactory;
use crate::core::shape::ShapeFactory;
use crate::core::texture::{FloatTexture, SpectrumTexture};
use crate::utils::arena;
use crate::utils::arena::Arena;
use crate::utils::error::FileLoc;
use crate::utils::parallel::run_async;
@ -13,6 +18,7 @@ use parking_lot::Mutex;
use rayon::prelude::*;
use shared::core::camera::Camera;
use shared::core::color::ColorEncoding;
use shared::core::color::LINEAR;
use shared::core::film::Film;
use shared::core::filter::Filter;
use shared::core::light::Light;
@ -142,7 +148,7 @@ impl BasicScene {
let sampler_film = Arc::clone(&film_instance);
let sampler_job = run_async(move || {
let res = sampler_film.as_ref().base().full_resolution;
Sampler::create(&sampler.name, &sampler.parameters, res, &sampler.loc)
Sampler::create(&sampler.name, &sampler.parameters, res, &sampler.loc, arena)
.expect("Sampler was not correctly created")
});
self.sampler_state.lock().job = Some(sampler_job);
@ -154,10 +160,11 @@ impl BasicScene {
Camera::create(
&camera.base.name,
&camera.base.parameters,
medium,
&camera.camera_transform,
medium,
camera_film,
&camera.base.loc,
arena,
)
.expect("Failed to create camera")
});
@ -221,15 +228,19 @@ impl BasicScene {
let texture_clone = texture.clone();
let job = run_async(move || {
let render_from_texture = texture_clone.render_from_object.start_transform();
let tex_dict = TextureParameterDictionary::new(&texture_clone.base.parameters, None);
Arc::new(FloatTexture::create(
let render_from_texture = texture_clone.render_from_object.start_transform;
let tex_dict =
TextureParameterDictionary::new(texture_clone.base.parameters.into(), None);
let texture = FloatTexture::create(
&texture_clone.base.name,
&render_from_texture,
&tex_dict,
&texture_clone.base.loc,
))
tex_dict,
texture_clone.base.loc,
arena,
)
.expect("Could not create Float texture");
Arc::new(texture)
});
state.float_texture_jobs.insert(name, job);
@ -275,16 +286,20 @@ impl BasicScene {
let texture_clone = texture.clone();
let job = run_async(move || {
let render_from_texture = texture_clone.render_from_object.start_transform();
let tex_dict = TextureParameterDictionary::new(&texture_clone.base.parameters, None);
Arc::new(SpectrumTexture::create(
let render_from_texture = texture_clone.render_from_object.start_transform;
let tex_dict =
TextureParameterDictionary::new(texture_clone.base.parameters.into(), None);
let texture = SpectrumTexture::create(
&texture_clone.base.name,
&render_from_texture,
&tex_dict,
tex_dict,
SpectrumType::Albedo,
&texture_clone.base.loc,
))
texture_clone.base.loc,
arena,
)
.expect("Could not crate spectrum texture.");
Arc::new(texture)
});
state.spectrum_texture_jobs.insert(name, job);
@ -337,37 +352,47 @@ impl BasicScene {
// Create serial textures (need access to already-loaded textures)
let named = NamedTextures {
float_textures: float_textures.clone(),
spectrum_textures: spectrum_textures.clone(),
albedo_spectrum_textures: spectrum_textures.clone(),
illuminant_spectrum_textures: spectrum_textures.clone(),
unbounded_spectrum_textures: spectrum_textures.clone(),
};
for (name, entity) in state.serial_float_textures.drain(..) {
let render_from_texture = entity.render_from_object.start_transform();
let tex_dict = TextureParameterDictionary::new(&entity.base.parameters, Some(&named));
let render_from_texture = entity.render_from_object.start_transform;
let tex_dict =
TextureParameterDictionary::new(entity.base.parameters.into(), Some(named));
let tex = FloatTexture::create(
&entity.base.name,
&render_from_texture,
&tex_dict,
&entity.base.loc,
);
render_from_texture,
tex_dict,
entity.base.loc,
arena,
)
.expect("Could not create float texture");
float_textures.insert(name, Arc::new(tex));
}
for (name, entity) in state.serial_spectrum_textures.drain(..) {
let render_from_texture = entity.render_from_object.start_transform();
let tex_dict = TextureParameterDictionary::new(&entity.base.parameters, Some(&named));
let render_from_texture = entity.render_from_object.start_transform;
let tex_dict =
TextureParameterDictionary::new(entity.base.parameters.into(), Some(named));
let tex = SpectrumTexture::create(
&entity.base.name,
&render_from_texture,
&tex_dict,
render_from_texture,
tex_dict,
SpectrumType::Albedo,
&entity.base.loc,
);
entity.base.loc,
arena,
)
.expect("Could not create spectrum texture");
spectrum_textures.insert(name, Arc::new(tex));
}
NamedTextures {
float_textures,
spectrum_textures,
albedo_spectrum_textures: spectrum_textures,
unbounded_spectrum_textures: spectrum_textures,
illuminant_spectrum_textures: spectrum_textures,
}
}
@ -410,15 +435,18 @@ impl BasicScene {
}
let normal_map = self.get_normal_map(&state, &entity.parameters);
let tex_dict = TextureParameterDictionary::new(&entity.parameters, Some(textures));
let tex_dict =
TextureParameterDictionary::new(entity.parameters.into(), Some(*textures));
let mat = Material::create(
&mat_type,
&tex_dict,
normal_map,
&named_materials,
&entity.loc,
);
named_materials,
entity.loc,
arena,
)
.expect("Could not create material");
named_materials.insert(name.clone(), mat);
}
@ -427,25 +455,24 @@ impl BasicScene {
for entity in &state.materials {
let normal_map = self.get_normal_map(&state, &entity.parameters);
let tex_dict = TextureParameterDictionary::new(&entity.parameters, Some(textures));
let tex_dict =
TextureParameterDictionary::new(entity.parameters.into(), Some(*textures));
let mat = Material::create(
&entity.name,
&tex_dict,
normal_map,
&named_materials,
&entity.loc,
);
named_materials,
entity.loc,
arena,
)
.expect("Could not create material");
materials.push(mat);
}
(named_materials, materials)
}
// ========================================================================
// Finalization: Aggregate
// ========================================================================
pub fn create_aggregate(
&self,
arena: &mut Arena,
@ -494,12 +521,13 @@ impl BasicScene {
.map(|sh| {
Shape::create(
&sh.base.name,
sh.render_from_object.as_ref(),
sh.object_from_render.as_ref(),
*sh.render_from_object.as_ref(),
*sh.object_from_render.as_ref(),
sh.reverse_orientation,
&sh.base.parameters,
&lookup.textures.float_textures,
&sh.base.loc,
sh.base.parameters,
lookup.textures.float_textures,
sh.base.loc,
arena,
)
})
.collect()
@ -515,12 +543,13 @@ impl BasicScene {
.map(|sh| {
Shape::create(
&sh.transformed_base.base.name,
sh.identity.as_ref(),
sh.identity.as_ref(),
*sh.identity.as_ref(),
*sh.identity.as_ref(),
sh.reverse_orientation,
&sh.transformed_base.base.parameters,
&lookup.textures.float_textures,
&sh.transformed_base.base.loc,
sh.transformed_base.base.parameters,
lookup.textures.float_textures,
sh.transformed_base.base.loc,
arena,
)
})
.collect()
@ -546,11 +575,19 @@ impl BasicScene {
&lookup.textures.float_textures,
);
let mtl = lookup.resolve_material(&entity.material, &entity.base.loc);
let mtl = lookup
.resolve_material(&entity.material, &entity.base.loc)
.unwrap();
let mi = MediumInterface::new(
lookup.find_medium(&entity.inside_medium, &entity.base.loc),
lookup.find_medium(&entity.outside_medium, &entity.base.loc),
lookup
.find_medium(&entity.inside_medium, &entity.base.loc)
.unwrap()
.as_ref(),
lookup
.find_medium(&entity.outside_medium, &entity.base.loc)
.unwrap()
.as_ref(),
);
let shape_lights_opt = lookup.shape_lights.get(&i);
@ -569,17 +606,17 @@ impl BasicScene {
let prim =
if area_light.is_none() && !mi.is_medium_transition() && alpha_tex.is_none() {
let p = SimplePrimitive::new(shape_ptr, mtl);
Primitive::Simple(arena.alloc(p))
let p = SimplePrimitive::new(shape_ptr, Ptr::from(&mtl));
Primitive::Simple(p)
} else {
let p = GeometricPrimitive::new(
shape_ptr,
mtl,
Ptr::from(&mtl),
area_light,
mi.clone(),
alpha_tex.clone(),
);
Primitive::Geometric(arena.alloc(p))
Primitive::Geometric(p)
};
primitives.push(prim);
@ -617,7 +654,7 @@ impl BasicScene {
}
// ========================================================================
// Private helpers
// Helpers
// ========================================================================
fn get_singleton<T: Send + 'static>(
@ -655,18 +692,18 @@ impl BasicScene {
let filename_clone = filename.clone();
let job = run_async(move || {
let path = std::path::Path::new(&filename_clone);
let immeta = Image::read(path, Some(ColorEncoding::Linear))
.unwrap_or_else(|e| panic!("{}: unable to read normal map: {}", filename_clone, e));
let immeta = Image::read(path, Some(LINEAR)).expect(&format!(
"{}: normal map must contain R, G, B channels",
filename_clone
));
let rgb_desc = immeta
.image
.get_channel_desc(&["R", "G", "B"])
.unwrap_or_else(|| {
panic!(
.expect(&format!(
"{}: normal map must contain R, G, B channels",
filename_clone
)
});
));
Arc::new(immeta.image.select_channels(&rgb_desc))
});
@ -692,21 +729,21 @@ impl BasicScene {
loc: &FileLoc,
textures: &HashMap<String, Arc<FloatTexture>>,
) -> Option<Arc<FloatTexture>> {
if let Some(name) = params.get_texture("alpha") {
let name = params.get_texture("alpha");
match textures.get(&name) {
Some(tex) => Some(tex.clone()),
None => panic!("{:?}: Alpha texture '{}' not found", loc, name),
}
} else {
let alpha_val = params.get_one_float("alpha", 1.0);
if alpha_val < 1.0 {
Some(Arc::new(FloatTexture::Constant(FloatConstantTexture::new(
alpha_val,
))))
} else {
None
}
}
// } else {
// let alpha_val = params.get_one_float("alpha", 1.0);
// if alpha_val < 1.0 {
// Some(Arc::new(FloatTexture::Constant(FloatConstantTexture::new(
// alpha_val,
// ))))
// } else {
// None
// }
// }
}
pub fn get_medium(&self, name: &str, loc: &FileLoc) -> Option<Arc<Medium>> {

View file

@ -5,6 +5,7 @@ use shared::core::options::get_options;
use shared::core::shape::*;
use shared::shapes::*;
// use shared::spectra::*;
use anyhow::Result;
use parking_lot::Mutex;
use shared::utils::Transform;
use std::collections::HashMap;
@ -19,10 +20,10 @@ pub trait CreateShape {
object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
float_textures: HashMap<String, FloatTexture>,
float_textures: HashMap<String, Arc<FloatTexture>>,
loc: FileLoc,
arena: &mut Arena,
) -> Result<Vec<Shape>, String>;
) -> Result<Vec<Shape>>;
}
pub trait ShapeFactory {
@ -32,10 +33,10 @@ pub trait ShapeFactory {
object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
float_textures: HashMap<String, FloatTexture>,
float_textures: HashMap<String, Arc<FloatTexture>>,
loc: FileLoc,
arena: &mut Arena,
) -> Result<Vec<Shape>, String>;
) -> Result<Vec<Shape>>;
}
impl ShapeFactory for Shape {
@ -45,10 +46,10 @@ impl ShapeFactory for Shape {
object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
float_textures: HashMap<String, FloatTexture>,
float_textures: HashMap<String, Arc<FloatTexture>>,
loc: FileLoc,
arena: &mut Arena,
) -> Result<Vec<Shape>, String> {
) -> Result<Vec<Shape>> {
match name {
"sphere" => SphereShape::create(
render_from_object,
@ -58,7 +59,7 @@ impl ShapeFactory for Shape {
float_textures,
loc,
arena,
)?,
),
"cylinder" => CylinderShape::create(
render_from_object,
object_from_render,
@ -67,7 +68,7 @@ impl ShapeFactory for Shape {
float_textures,
loc,
arena,
)?,
),
"disk" => DiskShape::create(
render_from_object,
object_from_render,
@ -76,7 +77,7 @@ impl ShapeFactory for Shape {
float_textures,
loc,
arena,
)?,
),
"bilinearmesh" => BilinearPatchShape::create(
render_from_object,
object_from_render,
@ -85,7 +86,7 @@ impl ShapeFactory for Shape {
float_textures,
loc,
arena,
)?,
),
"trianglemesh" => TriangleShape::create(
render_from_object,
object_from_render,
@ -94,14 +95,24 @@ impl ShapeFactory for Shape {
float_textures,
loc,
arena,
)?,
),
"plymesh" => {
let filename = resolve_filename(parameters.get_one_string("filename", ""));
let ply_mesh = TriQuadMesh::read_ply(filename);
let mut edge_length = parameters.get_one_float("edgelength", 1.);
edge_length *= get_options().displacement_edge_scale;
let displacement_tex_name = parameters.get_texture("displacement");
// let filename = resolve_filename(&parameters.get_one_string("filename", ""));
// let ply_mesh = TriQuadMesh::read_ply(filename);
// let mut edge_length = parameters.get_one_float("edgelength", 1.);
// edge_length *= get_options().displacement_edge_scale;
// let displacement_tex_name = parameters.get_texture("displacement");
TriangleShape::create(
render_from_object,
object_from_render,
reverse_orientation,
parameters,
float_textures,
loc,
arena,
)
}
_ => Err(anyhow!("Unknown shape name")),
}
}
}

View file

@ -7,17 +7,20 @@ use shared::spectra::DenselySampledSpectrum;
use std::collections::HashMap;
use std::sync::LazyLock;
pub static SPECTRUM_CACHE: LazyLock<Mutex<HashMap<String, Spectrum>>> =
pub static SPECTRUM_CACHE: LazyLock<InternCache<DenselySampledSpectrum>> =
LazyLock::new(InternCache::new);
pub static SPECTRUM_FILE_CACHE: LazyLock<Mutex<HashMap<String, Spectrum>>> =
LazyLock::new(|| Mutex::new(HashMap::new()));
fn get_spectrum_cache() -> &'static InternCache<DenselySampledSpectrum> {
SPECTRUM_CACHE.get_or_init(InternCache::new)
pub fn get_spectrum_cache() -> &'static InternCache<DenselySampledSpectrum> {
&SPECTRUM_CACHE
}
pub fn spectrum_to_photometric(s: Spectrum) -> Float {
let effective_spectrum = match s {
Spectrum::RGBIlluminant(ill) => &Spectrum::Dense(ill.illuminant),
_ => s,
Spectrum::RGBIlluminant(ill) => &Spectrum::Dense(*ill.illuminant),
_ => &s,
};
effective_spectrum.inner_product(cie_y)
effective_spectrum.inner_product(&cie_y())
}

View file

@ -2,11 +2,13 @@ use crate::textures::*;
use crate::utils::mipmap::MIPMap;
use crate::utils::mipmap::MIPMapFilterOptions;
use crate::utils::{Arena, FileLoc, TextureParameterDictionary};
use anyhow::{Result, anyhow};
use enum_dispatch::enum_dispatch;
use shared::Float;
use shared::core::color::ColorEncoding;
use shared::core::geometry::Vector3f;
use shared::core::image::WrapMode;
use shared::core::texture::SpectrumType;
use shared::core::texture::{
CylindricalMapping, PlanarMapping, SphericalMapping, TextureEvalContext, TextureMapping2D,
UVMapping,
@ -17,10 +19,12 @@ use shared::utils::Transform;
use std::collections::HashMap;
use std::sync::{Arc, Mutex, OnceLock};
#[enum_dispatch]
pub trait FloatTextureTrait {
fn evaluate(&self, ctx: &TextureEvalContext) -> Float;
}
#[enum_dispatch]
pub trait SpectrumTextureTrait {
fn evaluate(&self, _ctx: &TextureEvalContext, _lambda: &SampledWavelengths) -> SampledSpectrum;
}
@ -37,11 +41,16 @@ pub enum FloatTexture {
Checkerboard(FloatCheckerboardTexture),
Dots(FloatDotsTexture),
FBm(FBmTexture),
// Ptex(FloatPtexTexture),
Windy(WindyTexture),
Wrinkled(WrinkledTexture),
}
impl FloatTextureTrait for FloatDotsTexture {
fn evaluate(&self, _ctx: &shared::core::texture::TextureEvalContext) -> shared::Float {
todo!()
}
}
impl FloatTextureTrait for Arc<FloatTexture> {
fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
self.as_ref().evaluate(ctx)
@ -51,63 +60,26 @@ impl FloatTextureTrait for Arc<FloatTexture> {
impl FloatTexture {
pub fn create(
name: &str,
render_from_texture: &Transform,
params: &TextureParameterDictionary,
loc: &FileLoc,
render_from_texture: Transform,
params: TextureParameterDictionary,
loc: FileLoc,
arena: &mut Arena,
) -> Result<Self, String> {
) -> Result<Self> {
match name {
"constant" => {
let tex = FloatConstantTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Constant(tex))
}
"scale" => Ok(FloatScaledTexture::create(
render_from_texture,
params,
loc,
arena,
)),
"mix" => {
let tex = FloatMixTexture::create(render_from_texture, params, loc, arena);
Ok(FloatTexture::Mix(tex))
}
"constant" => FloatConstantTexture::create(render_from_texture, params, loc),
"scale" => FloatScaledTexture::create(&render_from_texture, &params, &loc, arena),
"mix" => FloatMixTexture::create(&render_from_texture, &params, &loc, arena),
"directionmix" => {
let tex = FloatDirectionMixTexture::create(render_from_texture, params, loc, arena);
Ok(FloatTexture::DirectionMix(tex))
FloatDirectionMixTexture::create(&render_from_texture, &params, &loc, arena)
}
"bilerp" => {
let tex = FloatBilerpTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Bilerp(tex))
}
"imagemap" => {
let tex = FloatImageTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Image(tex))
}
"checkerboard" => {
let tex = FloatCheckerboardTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Checkerboard(tex))
}
"dots" => {
let tex = FloatDotsTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Dots(tex))
}
"fbm" => {
let tex = FBmTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::FBm(tex))
}
"wrinkled" => {
let tex = WrinkledTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Wrinkled(tex))
}
"windy" => {
let tex = WindyTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Windy(tex))
}
"ptex" => {
let tex = FloatPtexTexture::create(render_from_texture, params, loc);
Ok(FloatTexture::Ptex(tex))
}
_ => Err(format!("Float texture type '{}' unknown at {}", name, loc)),
"bilerp" => FloatBilerpTexture::create(render_from_texture, params, loc),
"imagemap" => FloatImageTexture::create(render_from_texture, params, loc),
"checkerboard" => FloatCheckerboardTexture::create(render_from_texture, params, loc),
"dots" => FloatDotsTexture::create(render_from_texture, params, loc),
"fbm" => FBmTexture::create(render_from_texture, params, loc),
"wrinkled" => WrinkledTexture::create(render_from_texture, params, loc),
"windy" => WindyTexture::create(render_from_texture, params, loc),
_ => Err(anyhow!("Float texture type '{}' unknown at {}", name, loc)),
}
}
}
@ -129,12 +101,70 @@ pub enum SpectrumTexture {
Scaled(SpectrumScaledTexture),
}
pub trait CreateSpectrumTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
spectrum_type: SpectrumType,
loc: FileLoc,
) -> Result<SpectrumTexture>;
}
impl SpectrumTexture {
pub fn create(
name: &str,
render_from_texture: Transform,
params: TextureParameterDictionary,
spectrum_type: SpectrumType,
loc: FileLoc,
_arena: &mut Arena,
) -> Result<Self> {
match name {
"constant" => {
SpectrumConstantTexture::create(render_from_texture, params, spectrum_type, loc)
}
"scale" => {
SpectrumScaledTexture::create(render_from_texture, params, spectrum_type, loc)
}
"mix" => SpectrumMixTexture::create(render_from_texture, params, spectrum_type, loc),
"directionmix" => {
SpectrumDirectionMixTexture::create(render_from_texture, params, spectrum_type, loc)
}
"bilerp" => {
SpectrumBilerpTexture::create(render_from_texture, params, spectrum_type, loc)
}
"imagemap" => {
SpectrumImageTexture::create(render_from_texture, params, spectrum_type, loc)
}
"checkerboard" => {
SpectrumCheckerboardTexture::create(render_from_texture, params, spectrum_type, loc)
}
"dots" => SpectrumDotsTexture::create(render_from_texture, params, spectrum_type, loc),
_ => Err(anyhow!(
"Spectrum texture type '{}' unknown at {}",
name,
loc
)),
}
}
}
impl SpectrumTextureTrait for Arc<SpectrumTexture> {
fn evaluate(&self, ctx: &TextureEvalContext, lambda: &SampledWavelengths) -> SampledSpectrum {
self.as_ref().evaluate(ctx, lambda)
}
}
impl SpectrumTextureTrait for SpectrumDotsTexture {
fn evaluate(
&self,
_ctx: &shared::core::texture::TextureEvalContext,
_lambda: &shared::spectra::SampledWavelengths,
) -> shared::spectra::SampledSpectrum {
todo!()
}
}
pub trait CreateTextureMapping {
fn create(
params: &TextureParameterDictionary,

View file

@ -1,3 +1,4 @@
use crate::core::filter::CreateFilterSampler;
use shared::Float;
use shared::core::filter::FilterSampler;
use shared::core::geometry::{Point2f, Vector2f};

View file

@ -1,3 +1,4 @@
use crate::core::filter::CreateFilterSampler;
use shared::Float;
use shared::core::filter::FilterSampler;
use shared::core::geometry::{Point2f, Vector2f};

View file

@ -57,16 +57,16 @@ pub static REC2020_COEFFS: Lazy<&[Float]> =
});
pub static SRGB_TABLE: Lazy<RGBToSpectrumTableData> =
Lazy::new(|| RGBToSpectrumTableData::new(SRGB_SCALE, SRGB_COEFFS));
Lazy::new(|| RGBToSpectrumTableData::new(SRGB_SCALE.to_vec(), SRGB_COEFFS.to_vec()));
pub static DCI_P3_TABLE: Lazy<RGBToSpectrumTableData> =
Lazy::new(|| RGBToSpectrumTableData::new(DCI_P3_SCALE, DCI_P3_COEFFS));
Lazy::new(|| RGBToSpectrumTableData::new(DCI_P3_SCALE.to_vec(), DCI_P3_COEFFS.to_vec()));
pub static REC2020_TABLE: Lazy<RGBToSpectrumTableData> =
Lazy::new(|| RGBToSpectrumTableData::new(REC2020_SCALE, REC2020_COEFFS));
Lazy::new(|| RGBToSpectrumTableData::new(REC2020_SCALE.to_vec(), REC2020_COEFFS.to_vec()));
pub static ACES_TABLE: Lazy<RGBToSpectrumTableData> =
Lazy::new(|| RGBToSpectrumTableData::new(ACES_SCALE, ACES_COEFFS));
Lazy::new(|| RGBToSpectrumTableData::new(ACES_SCALE.to_vec(), ACES_COEFFS.to_vec()));
// pub static ACES_TABLE: Lazy<RGBToSpectrumTableData> = Lazy::new(|| {
// RGBToSpectrumTableData::load(Path::new("data/"), "aces2065_1")

View file

@ -2,7 +2,7 @@ use super::state::PathState;
use crate::core::light::Light;
use shared::core::geometry::Ray;
use shared::core::interaction::{Interaction, InteractionTrait};
use shared::core::primitive::Primitive;
use shared::core::primitive::{Primitive, PrimitiveTrait};
use shared::core::shape::ShapeIntersection;
use shared::lights::LightSampler;
use shared::spectra::SampledWavelengths;
@ -41,7 +41,10 @@ impl IntegratorBase {
}
pub fn unoccluded(&self, p0: &Interaction, p1: &Interaction) -> bool {
!self.intersect_p(&p0.spawn_ray_to_interaction(p1), Some(1. - SHADOW_EPSILON))
!self.intersect_p(
&p0.spawn_ray_to_interaction(*p1.get_common()),
Some(1. - SHADOW_EPSILON),
)
}
pub fn add_infinite_light_contribution(

View file

@ -1,5 +1,5 @@
use shared::core::geometry::Point2f;
use shared::Float;
use shared::core::geometry::Point2f;
pub const N_RHO_SAMPLES: usize = 16;
@ -23,20 +23,20 @@ pub static UC_RHO: [Float; N_RHO_SAMPLES] = [
];
pub static U_RHO: [Point2f; N_RHO_SAMPLES] = [
Point2f::new(0.855985, 0.570367),
Point2f::new(0.381823, 0.851844),
Point2f::new(0.285328, 0.764262),
Point2f::new(0.733380, 0.114073),
Point2f::new(0.542663, 0.344465),
Point2f::new(0.127274, 0.414848),
Point2f::new(0.964700, 0.947162),
Point2f::new(0.594089, 0.643463),
Point2f::new(0.095109, 0.170369),
Point2f::new(0.825444, 0.263359),
Point2f::new(0.429467, 0.454469),
Point2f::new(0.244460, 0.816459),
Point2f::new(0.756135, 0.731258),
Point2f::new(0.516165, 0.152852),
Point2f::new(0.180888, 0.214174),
Point2f::new(0.898579, 0.503897),
Point2f { 0: [0.855985, 0.570367]},
Point2f { 0: [0.381823, 0.851844]},
Point2f { 0: [0.285328, 0.764262]},
Point2f { 0: [0.733380, 0.114073]},
Point2f { 0: [0.542663, 0.344465]},
Point2f { 0: [0.127274, 0.414848]},
Point2f { 0: [0.964700, 0.947162]},
Point2f { 0: [0.594089, 0.643463]},
Point2f { 0: [0.095109, 0.170369]},
Point2f { 0: [0.825444, 0.263359]},
Point2f { 0: [0.429467, 0.454469]},
Point2f { 0: [0.244460, 0.816459]},
Point2f { 0: [0.756135, 0.731258]},
Point2f { 0: [0.516165, 0.152852]},
Point2f { 0: [0.180888, 0.214174]},
Point2f { 0: [0.898579, 0.503897]},
];

View file

@ -9,6 +9,7 @@ use shared::core::camera::Camera;
use shared::core::film::VisibleSurface;
use shared::core::geometry::{Point2i, Ray, Vector3f, VectorLike};
use shared::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
use shared::core::light::LightTrait;
use shared::core::light::{Light, LightSampleContext};
use shared::core::primitive::Primitive;
use shared::core::sampler::{Sampler, SamplerTrait};
@ -92,7 +93,7 @@ impl PathIntegrator {
&self,
intr: &SurfaceInteraction,
bsdf: &BSDF,
state: &PathState,
_state: &PathState,
lambda: &SampledWavelengths,
sampler: &mut Sampler,
) -> SampledSpectrum {
@ -102,34 +103,34 @@ impl PathIntegrator {
.light_sampler
.sample_with_context(&ctx, sampler.get1d())
else {
return SampledSpectrum::ZERO;
return SampledSpectrum::zero();
};
let Some(ls) = sampled.light.sample_li(&ctx, sampler.get2d(), lambda, true) else {
return SampledSpectrum::ZERO;
return SampledSpectrum::zero();
};
if ls.l.is_black() || ls.pdf == 0.0 {
return SampledSpectrum::ZERO;
return SampledSpectrum::zero();
}
let wo = intr.wo();
let wi = ls.wi;
let Some(f) = bsdf.f(wo, wi, TransportMode::Radiance) else {
return SampledSpectrum::ZERO;
return SampledSpectrum::zero();
};
let f = f * wi.abs_dot(intr.shading.n.into());
if f.is_black() {
return SampledSpectrum::ZERO;
return SampledSpectrum::zero();
}
if !self
.base
.unoccluded(&Interaction::Surface(intr.clone()), &ls.p_light)
{
return SampledSpectrum::ZERO;
return SampledSpectrum::zero();
}
let p_l = sampled.p * ls.pdf;
@ -233,7 +234,8 @@ impl RayIntegratorTrait for PathIntegrator {
if state.depth == 0 || state.specular_bounce {
state.l += state.beta * le;
} else if self.config.use_mis {
if let Some(light) = &isect.area_light {
if !isect.area_light.is_null() {
let light = &isect.area_light;
let p_l = self.light_sampler.pmf_with_context(&state.prev_ctx, light)
* light.pdf_li(&state.prev_ctx, ray.d, true);
let w_b = power_heuristic(1, state.prev_pdf, 1, p_l);

View file

@ -1,15 +1,18 @@
use super::RayIntegratorTrait;
use super::base::IntegratorBase;
use crate::Arena;
use crate::core::image::{Image, ImageMetadata};
use crate::core::camera::InitMetadata;
use crate::core::film::FilmTrait;
use crate::core::image::{Image, ImageIO, ImageMetadata};
use crate::spectra::get_spectra_context;
use indicatif::{ProgressBar, ProgressStyle};
use rayon::iter::{IntoParallelIterator, IntoParallelRefIterator, ParallelIterator};
use shared::Float;
use shared::core::camera::Camera;
use shared::core::geometry::{Bounds2i, Point2i};
use shared::core::camera::{Camera, CameraTrait};
use shared::core::geometry::{Bounds2i, Point2i, VectorLike};
use shared::core::options::get_options;
use shared::core::sampler::Sampler;
use shared::core::sampler::get_camera_sample;
use shared::core::sampler::{Sampler, SamplerTrait};
use shared::spectra::SampledSpectrum;
use std::io::Write;
use std::path::Path;
@ -83,7 +86,7 @@ pub fn render<T>(
let s_index = sample_index as usize;
let mut tile_sampler = sampler_prototype.clone();
tile_sampler.start_pixel_sample(p_pixel, s_index, None);
tile_sampler.start_pixel_sample(p_pixel, s_index as i32, None);
evaluate_pixel_sample(
integrator,
@ -163,7 +166,7 @@ pub fn render<T>(
camera,
&mut sampler,
*p_pixel,
sample_index,
sample_index.try_into().unwrap(),
arena,
);
}
@ -202,7 +205,8 @@ pub fn render<T>(
let splat_scale = 1.0 / (wave_start as Float);
let film_metadata = ImageMetadata::default();
let film_image = camera.get_film().get_image(&film_metadata, splat_scale);
let film = *camera.get_film();
let film_image = film.get_image(&film_metadata, splat_scale);
let (mse_values, _mse_debug_img) =
film_image.mse(film_image.all_channels_desc(), ref_img, false);

View file

@ -11,6 +11,7 @@ pub struct PathState {
pub any_non_specular_bounces: bool,
pub eta_scale: Float,
pub prev_ctx: LightSampleContext,
pub prev_pdf: Float,
}
impl PathState {
@ -23,6 +24,7 @@ impl PathState {
any_non_specular_bounces: false,
eta_scale: 1.0,
prev_ctx: LightSampleContext::default(),
prev_pdf: 1.0,
}
}

View file

@ -47,8 +47,8 @@ impl CreateDiffuseLight for DiffuseAreaLight {
two_sided: bool,
fov: Float,
) -> Self {
let is_constant_zero = match &alpha {
FloatTexture::Constant(tex) => tex.evaluate(&TextureEvalContext::default()) == 0.0,
let is_constant_zero = match &*alpha {
GPUFloatTexture::Constant(tex) => tex.evaluate(&TextureEvalContext::default()) == 0.0,
_ => false,
};
@ -60,7 +60,7 @@ impl CreateDiffuseLight for DiffuseAreaLight {
let base = LightBase::new(light_type, render_from_light, medium_interface);
let lemit = Ptr::from(&lookup_spectrum(&le));
let lemit = lookup_spectrum(&le);
if !image.is_null() {
let desc = image
@ -96,8 +96,8 @@ impl CreateDiffuseLight for DiffuseAreaLight {
image,
colorspace,
shape,
alpha: stored_alpha,
lemit,
alpha: stored_alpha.expect("Could not retrieve texture"),
lemit: Ptr::from(&*lemit),
two_sided,
scale,
}

View file

@ -25,10 +25,10 @@ impl CreateDistantLight for DistantLight {
render_from_light,
MediumInterface::empty(),
);
let lemit = Ptr::from(&lookup_spectrum(&le));
let lemit = lookup_spectrum(&le);
Self {
base,
lemit,
lemit: Ptr::from(&*lemit),
scale,
scene_center: Point3f::default(),
scene_radius: 0.,

View file

@ -6,7 +6,7 @@ use crate::core::spectrum::spectrum_to_photometric;
use crate::core::texture::FloatTexture;
use crate::utils::sampling::PiecewiseConstant2D;
use crate::utils::{Arena, FileLoc, ParameterDictionary, resolve_filename};
use anyhow::{anyhow, Result};
use anyhow::{Result, anyhow};
use shared::core::geometry::Point2i;
use shared::core::light::{Light, LightBase, LightType};
use shared::core::medium::{Medium, MediumInterface};
@ -47,7 +47,7 @@ impl CreateGoniometricLight for GoniometricLight {
let distrib = PiecewiseConstant2D::from_image(&image);
Self {
base,
iemit,
iemit: *iemit,
scale,
image: Ptr::from(image.device_image()),
distrib: Ptr::from(&distrib.device),
@ -92,7 +92,7 @@ impl CreateLight for GoniometricLight {
));
}
if res.x != res.y {
if res.x() != res.y() {
return Err(anyhow!(
loc,
"image resolution ({}, {}) is non-square; unlikely to be an equal-area map",

View file

@ -1,16 +1,15 @@
use crate::Arena;
use crate::core::image::{Image, ImageIO};
use crate::core::light::lookup_spectrum;
use crate::core::spectrum::spectrum_to_photometric;
use crate::spectra::get_spectra_context;
use crate::utils::sampling::{PiecewiseConstant2D, WindowedPiecewiseConstant2D};
use crate::utils::{FileLoc, ParameterDictionary, resolve_filename};
use crate::utils::{FileLoc, ParameterDictionary, Upload, resolve_filename};
use anyhow::{Result, anyhow};
use rayon::iter::{IndexedParallelIterator, ParallelIterator};
use rayon::prelude::ParallelSliceMut;
use rayon::prelude::*;
use shared::core::camera::CameraTransform;
use shared::core::geometry::{Bounds2f, Frame, Point2f, Point2i, Point3f, VectorLike, cos_theta};
use shared::core::image::{DeviceImage, PixelFormat, WrapMode};
use shared::core::image::{PixelFormat, WrapMode};
use shared::core::light::{Light, LightBase, LightType};
use shared::core::medium::MediumInterface;
use shared::core::spectrum::Spectrum;
@ -18,116 +17,58 @@ use shared::core::texture::SpectrumType;
use shared::lights::{ImageInfiniteLight, PortalInfiniteLight, UniformInfiniteLight};
use shared::spectra::RGBColorSpace;
use shared::utils::math::{equal_area_sphere_to_square, equal_area_square_to_sphere};
use shared::utils::sampling::{DevicePiecewiseConstant2D, DeviceWindowedPiecewiseConstant2D};
use shared::utils::{Ptr, Transform};
use shared::{Float, PI};
use std::path::Path;
use std::sync::Arc;
use crate::core::light::lookup_spectrum;
pub trait CreateImageInfiniteLight {
fn new(
render_from_light: Transform,
medium_interface: MediumInterface,
scale: Float,
image: Arc<DeviceImage>,
image_color_space: Arc<RGBColorSpace>,
image: Ptr<DeviceImage>,
image_color_space: Ptr<RGBColorSpace>,
distrib: Ptr<DevicePiecewiseConstant2D>,
compensated_distrib: Ptr<DevicePiecewiseConstant2D>,
) -> Self;
}
impl CreateImageInfiniteLight for ImageInfiniteLight {
fn new(
render_from_light: Transform,
medium_interface: MediumInterface,
scale: Float,
image: Arc<DeviceImage>,
image_color_space: Arc<RGBColorSpace>,
image: Ptr<DeviceImage>,
image_color_space: Ptr<RGBColorSpace>,
distrib: Ptr<DevicePiecewiseConstant2D>,
compensated_distrib: Ptr<DevicePiecewiseConstant2D>,
) -> Self {
let base = LightBase::new(
LightType::Infinite,
render_from_light,
MediumInterface::default(),
);
let desc = image
.get_channel_desc(&["R", "G", "B"])
.expect("Image used for DiffuseAreaLight doesn't have R, G, B channels");
assert_eq!(3, desc.size());
assert!(desc.is_identity());
let res = image.resolution();
assert_eq!(
res.x(),
res.y(),
"Image resolution ({}, {}) is non-square. Unlikely to be an equal area environment map.",
res.x(),
res.y()
);
let n_u = res.x() as usize;
let n_v = res.y() as usize;
let mut data: Vec<Float> = (0..n_v)
.flat_map(|v| {
(0..n_u).map(move |u| {
image
.get_channels(Point2i::new(u as i32, v as i32))
.average()
})
})
.collect();
let distrib = PiecewiseConstant2D::new(&data, n_u, n_v);
let slice = distrib.as_mut_slice();
let average = slice.iter().sum::<Float>() / slice.len() as Float;
let mut all_zero = true;
for v in slice.iter_mut() {
*v = (*v - average).max(0.0);
all_zero &= *v == 0.0;
}
if all_zero {
data.fill(1.0);
}
let compensated_distrib = PiecewiseConstant2D::new(&data, n_u, n_v);
ImageInfiniteLight {
Self {
base,
image: Ptr::from(image.device_image()),
image_color_space: Ptr::from(image_color_space.as_ref()),
scene_center: Point3f::default(),
scene_radius: 0.,
image,
image_color_space,
scale,
distrib: Ptr::from(&*distrib),
compensated_distrib: Ptr::from(&*compensated_distrib),
distrib,
compensated_distrib,
scene_center: Point3f::default(),
scene_radius: 0.0,
}
}
}
#[derive(Debug)]
struct InfinitePortalLightStorage {
image: Image,
distribution: WindowedPiecewiseConstant2D,
image_color_space: RGBColorSpace,
}
#[derive(Clone, Debug)]
pub struct PortalInfiniteLightHost {
pub device: PortalInfiniteLight,
pub filename: String,
_storage: Arc<InfinitePortalLightStorage>,
}
pub trait CreatePortalInfiniteLight {
fn new(
render_from_light: Transform,
scale: Float,
image: Arc<Image>,
image_color_space: Arc<RGBColorSpace>,
points: Vec<Point3f>,
image: Ptr<DeviceImage>,
image_color_space: Ptr<RGBColorSpace>,
portal: [Point3f; 4],
portal_frame: Frame,
distribution: Ptr<DeviceWindowedPiecewiseConstant2D>,
) -> Self;
}
@ -135,145 +76,48 @@ impl CreatePortalInfiniteLight for PortalInfiniteLight {
fn new(
render_from_light: Transform,
scale: Float,
image: Arc<Image>,
image_color_space: Arc<RGBColorSpace>,
points: Vec<Point3f>,
image: Ptr<DeviceImage>,
image_color_space: Ptr<RGBColorSpace>,
portal: [Point3f; 4],
portal_frame: Frame,
distribution: Ptr<DeviceWindowedPiecewiseConstant2D>,
) -> Self {
let base = LightBase::new(
LightType::Infinite,
render_from_light,
MediumInterface::default(),
);
let desc = image
.get_channel_desc(&["R", "G", "B"])
.unwrap_or_else(|_| {
panic!("Image used for PortalImageInfiniteLight doesn't have R, G, B channels.",)
});
assert_eq!(3, desc.offset.len());
let src_res = image.resolution();
if src_res.x() != src_res.y() {
panic!(
"Image resolution ({}, {}) is non-square. It's unlikely this is an equal area environment map.",
src_res.x(),
src_res.y()
);
}
if points.len() != 4 {
panic!(
"Expected 4 vertices for infinite light portal but given {}",
points.len()
);
}
let portal: [Point3f; 4] = [points[0], points[1], points[2], points[3]];
let p01 = (portal[1] - portal[0]).normalize();
let p12 = (portal[2] - portal[1]).normalize();
let p32 = (portal[2] - portal[3]).normalize();
let p03 = (portal[3] - portal[0]).normalize();
if (p01.dot(p32) - 1.0).abs() > 0.001 || (p12.dot(p03) - 1.0).abs() > 0.001 {
panic!("Infinite light portal isn't a planar quadrilateral (opposite edges)");
}
if p01.dot(p12).abs() > 0.001
|| p12.dot(p32).abs() > 0.001
|| p32.dot(p03).abs() > 0.001
|| p03.dot(p01).abs() > 0.001
{
panic!("Infinite light portal isn't a planar quadrilateral (perpendicular edges)");
}
let portal_frame = Frame::from_xy(p03, p01);
let width = src_res.x();
let height = src_res.y();
let mut new_pixels = vec![0.0 as Float; (width * height * 3) as usize];
new_pixels
.par_chunks_mut((width * 3) as usize)
.enumerate()
.for_each(|(y, row_pixels)| {
let y = y as i32;
for x in 0..width {
let uv = Point2f::new(
(x as Float + 0.5) / width as Float,
(y as Float + 0.5) / height as Float,
);
let (w_world, _) = Self::render_from_image(portal_frame, uv);
let w_local = render_from_light.apply_inverse_vector(w_world).normalize();
let uv_equi = equal_area_sphere_to_square(w_local);
let pixel_idx = (x * 3) as usize;
for c in 0..3 {
let val = image.bilerp_channel_with_wrap(
uv_equi,
c,
WrapMode::OctahedralSphere.into(),
);
row_pixels[pixel_idx + c as usize] = val;
}
}
});
let img = Image::new(
PixelFormat::F32,
src_res,
&["R", "G", "B"],
image.encoding().into(),
);
let duv_dw_closure = |p: Point2f| -> Float {
let (_, jacobian) = Self::render_from_image(portal_frame, p);
jacobian
};
let d = img.get_sampling_distribution(
duv_dw_closure,
Bounds2f::from_points(Point2f::new(0., 0.), Point2f::new(1., 1.)),
);
let distribution = WindowedPiecewiseConstant2D::new(d);
PortalInfiniteLight {
Self {
base,
image: Ptr::from(img.device_image()),
image_color_space: Ptr::from(&*image_color_space),
image,
image_color_space,
scale,
scene_center: Point3f::default(),
scene_radius: 0.,
portal,
portal_frame,
distribution,
distribution: *distribution,
scene_center: Point3f::default(),
scene_radius: 0.0,
}
}
}
pub trait CreateUniformInfiniteLight {
fn new(render_from_light: Transform, le: Spectrum, scale: Float) -> Self;
fn new(render_from_light: Transform, scale: Float, lemit: Ptr<DenselySampledSpectrum>) -> Self;
}
impl CreateUniformInfiniteLight for UniformInfiniteLight {
fn new(render_from_light: Transform, le: Spectrum, scale: Float) -> Self {
fn new(render_from_light: Transform, scale: Float, lemit: Ptr<DenselySampledSpectrum>) -> Self {
let base = LightBase::new(
LightType::Infinite,
render_from_light,
MediumInterface::default(),
);
let lemit = Ptr::from(&lookup_spectrum(&le));
Self {
base,
lemit,
scale,
scene_center: Point3f::default(),
scene_radius: 0.,
scene_radius: 0.0,
}
}
}
@ -281,7 +125,7 @@ impl CreateUniformInfiniteLight for UniformInfiniteLight {
pub fn create(
arena: &mut Arena,
render_from_light: Transform,
medium: MediumInterface,
_medium: MediumInterface,
camera_transform: CameraTransform,
parameters: &ParameterDictionary,
colorspace: &RGBColorSpace,
@ -301,6 +145,7 @@ pub fn create(
return Err(anyhow!(loc, "cannot specify both \"L\" and \"filename\""));
}
// Uniform infinite light (no image)
if !has_file && !has_portal {
let spectrum = if has_spectrum {
scale /= spectrum_to_photometric(l[0]);
@ -313,13 +158,13 @@ pub fn create(
scale *= e_v / PI;
}
let light = UniformInfiniteLight::new(render_from_light, spectrum, scale);
let lemit = lookup_spectrum(&spectrum);
let light = UniformInfiniteLight::new(render_from_light, scale, lemit.upload(arena));
return Ok(Light::InfiniteUniform(light));
}
// Image based
let (image, image_cs) = load_image_or_constant(&filename, &l, colorspace, loc)?;
// Image-based lights
let (image, image_cs) = load_image(&filename, &l, colorspace, loc)?;
scale /= spectrum_to_photometric(Spectrum::Dense(image_cs.illuminant));
@ -328,26 +173,194 @@ pub fn create(
scale *= e_v / k_e;
}
// let image_ptr = image.upload(arena);
// let cs_ptr = image_cs.upload(arena);
if has_portal {
let portal_render: Vec<Point3f> = portal
.iter()
.map(|p| camera_transform.camera_from_world(0.0).apply_to_point(*p))
.collect();
let (portal_ptr, portal_len) = arena.alloc_slice(&portal_render);
let light =
PortalInfiniteLight::new(render_from_light, scale, image.into(), cs, portal_render);
Ok(Light::InfinitePortal(light))
create_portal_light(
arena,
render_from_light,
scale,
image,
image_cs,
&portal,
camera_transform,
loc,
)
} else {
let light = ImageInfiniteLight::new(render_from_light, medium, scale, image, cs);
Ok(Light::InfiniteImage(light))
create_image_light(arena, render_from_light, scale, image, image_cs)
}
}
fn load_image_or_constant(
fn create_image_light(
arena: &mut Arena,
render_from_light: Transform,
scale: Float,
image: Image,
image_cs: RGBColorSpace,
) -> Result<Light> {
let res = image.resolution();
assert_eq!(
res.x(),
res.y(),
"Image must be square for equal-area mapping"
);
let (n_u, n_v) = (res.x() as usize, res.y() as usize);
// Extract luminance data
let mut data: Vec<Float> = (0..n_v)
.flat_map(|v| {
(0..n_u).map(move |u| {
image
.get_channels(Point2i::new(u as i32, v as i32))
.average()
})
})
.collect();
let distrib = PiecewiseConstant2D::new(&data, n_u, n_v);
// Build compensated distribution
let average = data.iter().sum::<Float>() / data.len() as Float;
let mut all_zero = true;
for v in &mut data {
*v = (*v - average).max(0.0);
all_zero &= *v == 0.0;
}
if all_zero {
data.fill(1.0);
}
let compensated_distrib = PiecewiseConstant2D::new(&data, n_u, n_v);
let light = ImageInfiniteLight::new(
render_from_light,
scale,
image.upload(arena),
image_cs.upload(arena),
distrib.upload(arena),
compensated_distrib.upload(arena),
);
Ok(Light::InfiniteImage(light))
}
fn create_portal_light(
arena: &mut Arena,
render_from_light: Transform,
scale: Float,
image: Image,
image_cs: RGBColorSpace,
portal_points: &[Point3f],
camera_transform: CameraTransform,
loc: &FileLoc,
) -> Result<Light> {
let res = image.resolution();
if res.x() != res.y() {
return Err(anyhow!(loc, "Portal light image must be square"));
}
// Validate portal
if portal_points.len() != 4 {
return Err(anyhow!(
loc,
"Portal requires exactly 4 vertices, got {}",
portal_points.len()
));
}
let portal: [Point3f; 4] = portal_points
.iter()
.map(|p| camera_transform.camera_from_world(0.0).apply_to_point(*p))
.collect::<Vec<_>>()
.try_into()
.unwrap();
let portal_frame = validate_and_build_portal_frame(&portal, loc)?;
// Remap image through portal
let remapped = remap_image_through_portal(&image, &render_from_light, &portal_frame);
// Build distribution
let duv_dw = |p: Point2f| -> Float {
let (_, jacobian) = PortalInfiniteLight::render_from_image(portal_frame, p);
jacobian
};
let d = remapped.get_sampling_distribution(
duv_dw,
Bounds2f::from_points(Point2f::zero(), Point2f::fill(1.)),
);
let distribution = WindowedPiecewiseConstant2D::new(d);
let light = PortalInfiniteLight::new(
render_from_light,
scale,
remapped.upload(arena),
image_cs.upload(arena),
portal,
portal_frame,
distribution.upload(arena),
);
Ok(Light::InfinitePortal(light))
}
fn validate_and_build_portal_frame(portal: &[Point3f; 4], loc: &FileLoc) -> Result<Frame> {
let p01 = (portal[1] - portal[0]).normalize();
let p12 = (portal[2] - portal[1]).normalize();
let p32 = (portal[2] - portal[3]).normalize();
let p03 = (portal[3] - portal[0]).normalize();
if (p01.dot(p32) - 1.0).abs() > 0.001 || (p12.dot(p03) - 1.0).abs() > 0.001 {
return Err(anyhow!(loc, "Portal edges not parallel"));
}
if p01.dot(p12).abs() > 0.001
|| p12.dot(p32).abs() > 0.001
|| p32.dot(p03).abs() > 0.001
|| p03.dot(p01).abs() > 0.001
{
return Err(anyhow!(loc, "Portal edges not perpendicular"));
}
Ok(Frame::from_xy(p03, p01))
}
fn remap_image_through_portal(
image: &Image,
render_from_light: &Transform,
portal_frame: &Frame,
) -> Image {
let res = image.resolution();
let (width, height) = (res.x() as usize, res.y() as usize);
let mut pixels = vec![0.0f32; width * height * 3];
pixels
.par_chunks_mut(width * 3)
.enumerate()
.for_each(|(y, row)| {
for x in 0..width {
let uv = Point2f::new(
(x as Float + 0.5) / width as Float,
(y as Float + 0.5) / height as Float,
);
let (w_world, _) = PortalInfiniteLight::render_from_image(*portal_frame, uv);
let w_local = render_from_light.apply_inverse_vector(w_world).normalize();
let uv_equi = equal_area_sphere_to_square(w_local);
for c in 0..3 {
row[x * 3 + c] = image.bilerp_channel_with_wrap(
uv_equi,
c as i32,
WrapMode::OctahedralSphere.into(),
);
}
}
});
Image::from_f32(pixels, res, &["R", "G", "B"])
}
fn load_image(
filename: &str,
l: &[Spectrum],
colorspace: &RGBColorSpace,
@ -355,52 +368,51 @@ fn load_image_or_constant(
) -> Result<(Image, RGBColorSpace)> {
if filename.is_empty() {
let stdspec = get_spectra_context();
let rgb = &l[0].to_rgb(colorspace, &stdspec);
let rgb_values = [rgb.r, rgb.g, rgb.b];
let image = Image::new_constant(Point2i::new(1, 1), &["R", "G", "B"], &rgb_values);
Ok((image, colorspace.clone()))
} else {
let im = Image::read(Path::new(&filename), None)
let rgb = l[0].to_rgb(colorspace, &stdspec);
let image =
Image::new_constant(Point2i::new(1, 1), &["R", "G", "B"], &[rgb.r, rgb.g, rgb.b]);
return Ok((image, colorspace.clone()));
}
let im = Image::read(Path::new(filename), None)
.map_err(|e| anyhow!(loc, "failed to load '{}': {}", filename, e))?;
if im.image.has_any_infinite_pixels() || im.image.has_any_nan_pixels() {
return Err(anyhow!(loc, "image '{}' has invalid pixels", filename));
}
im.image
let desc = im
.image
.get_channel_desc(&["R", "G", "B"])
.map_err(|_| anyhow!(loc, "image '{}' must have R, G, B channels", filename))?;
let cs = im.metadata.colorspace.unwrap_or_else(|| colorspace.clone());
let image_desc = im.image.get_channel_desc(&["R", "G", "B"])?;
let selected = im.image.select_channels(&image_desc);
Ok((selected, cs))
}
Ok((im.image.select_channels(&desc), cs))
}
fn compute_hemisphere_illuminance(image: &Image, cs: &RGBColorSpace) -> Float {
let lum = cs.luminance_vector();
let res = image.resolution();
let mut sum = 0.0;
for y in 0..res.y() {
let v = (y as Float + 0.5) / res.y() as Float;
for x in 0..res.x() {
let sum: Float = (0..res.y())
.flat_map(|y| (0..res.x()).map(move |x| (x, y)))
.filter_map(|(x, y)| {
let u = (x as Float + 0.5) / res.x() as Float;
let v = (y as Float + 0.5) / res.y() as Float;
let w = equal_area_square_to_sphere(Point2f::new(u, v));
if w.z() <= 0.0 {
continue;
return None;
}
let r = image.get_channel(Point2i::new(x, y), 0);
let g = image.get_channel(Point2i::new(x, y), 1);
let b = image.get_channel(Point2i::new(x, y), 2);
let p = Point2i::new(x, y);
let r = image.get_channel(p, 0);
let g = image.get_channel(p, 1);
let b = image.get_channel(p, 2);
sum += (r * lum[0] + g * lum[1] + b * lum[2]) * cos_theta(w);
}
}
Some((r * lum[0] + g * lum[1] + b * lum[2]) * cos_theta(w))
})
.sum();
sum * 2.0 * PI / (res.x() * res.y()) as Float
}

View file

@ -35,7 +35,7 @@ impl CreatePointLight for PointLight {
render_from_light,
medium_interface,
);
let i = Ptr::from(lookup_spectrum(&le));
let i = Ptr::from(&*lookup_spectrum(&le));
Self { base, scale, i }
}

View file

@ -27,6 +27,7 @@ pub trait CreateProjectionLight {
scale: Float,
image: Ptr<DeviceImage>,
image_color_space: Ptr<RGBColorSpace>,
distrib: Ptr<DeviceWindowedPiecewiseConstant2D>,
fov: Float,
) -> Self;
}
@ -38,6 +39,7 @@ impl CreateProjectionLight for ProjectionLight {
scale: Float,
image: Ptr<DeviceImage>,
image_color_space: Ptr<RGBColorSpace>,
distrib: Ptr<DeviceWindowedPiecewiseConstant2D>,
fov: Float,
) -> Self {
let base = LightBase::new(
@ -45,30 +47,25 @@ impl CreateProjectionLight for ProjectionLight {
render_from_light,
medium_interface,
);
let aspect = image.resolution().x() as Float / image.resolution().y() as Float;
let screen_bounds = if aspect > 1. {
Bounds2f::from_points(Point2f::new(-aspect, -1.), Point2f::new(aspect, 1.))
let res = image.resolution();
let aspect = res.x() as Float / res.y() as Float;
let screen_bounds = if aspect > 1.0 {
Bounds2f::from_points(Point2f::new(-aspect, -1.0), Point2f::new(aspect, 1.0))
} else {
Bounds2f::from_points(
Point2f::new(-1., 1. / aspect),
Point2f::new(1., 1. / aspect),
Point2f::new(-1.0, -1.0 / aspect),
Point2f::new(1.0, 1.0 / aspect),
)
};
let hither = 1e-3;
let screen_from_light = Transform::perspective(fov, hither, 1e30).unwrap();
let light_from_screen = screen_from_light.inverse();
let opposite = (radians(fov) / 2.).tan();
let aspect_ratio = if aspect > 1. { aspect } else { 1. / aspect };
let a = 4. * square(opposite) * aspect_ratio;
let dwda = |p: Point2f| {
let w =
Vector3f::from(light_from_screen.apply_to_point(Point3f::new(p.x(), p.y(), 0.)));
cos_theta(w.normalize()).powi(3)
};
let d = image.get_sampling_distribution(dwda, screen_bounds);
let distrib = Ptr::from(&PiecewiseConstant2D::from_image(image).device);
let opposite = (radians(fov) / 2.0).tan();
let aspect_ratio = if aspect > 1.0 { aspect } else { 1.0 / aspect };
let a = 4.0 * square(opposite) * aspect_ratio;
Self {
base,
@ -143,12 +140,23 @@ impl CreateLight for ProjectionLight {
let flip = Transform::scale(1., -1., 1.);
let render_from_light_flip = render_from_light * flip;
let dwda = |p: Point2f| {
let w =
Vector3f::from(light_from_screen.apply_to_point(Point3f::new(p.x(), p.y(), 0.0)));
cos_theta(w.normalize()).powi(3)
};
let d = image.get_sampling_distribution(dwda, screen_bounds);
let distrib =
PiecewiseConstant2D::new(d.as_slice(), d.x_size() as usize, d.y_size() as usize);
let specific = ProjectionLight::new(
render_from_light_flip,
medium.into(),
scale,
image.upload(arena),
colorspace.upload(arena),
distrib.upload(arena),
fov,
);

View file

@ -42,7 +42,7 @@ impl CreateSpotLight for SpotLight {
MediumInterface::empty(),
);
let iemit = Ptr::from(&lookup_spectrum(&le));
let iemit = Ptr::from(&*lookup_spectrum(&le));
Self {
base,
iemit,

View file

@ -1,6 +1,6 @@
use crate::core::image::Image;
use crate::core::material::CreateMaterial;
use crate::spectra::get_colorspace_context;
use crate::spectra::{get_colorspace_context, get_colorspace_device};
use crate::utils::{Arena, FileLoc, TextureParameterDictionary, Upload};
use shared::bxdfs::HairBxDF;
use shared::core::material::Material;
@ -33,10 +33,9 @@ impl CreateMaterial for HairMaterial {
// Default distribution if nothing is spceified
let sigma_a = if sigma_a.is_none() && !reflectance.is_none() && !has_melanin {
let stdcs = get_colorspace_context();
let stdcs = get_colorspace_device();
let default_rgb = HairBxDF::sigma_a_from_concentration(1.3, 0.0, stdcs);
let spectrum =
Spectrum::RGBUnbounded(RGBUnboundedSpectrum::new(stdcs.srgb, default_rgb));
let spectrum = Spectrum::RGBUnbounded(default_rgb);
let texture = SpectrumTexture::Constant(SpectrumConstantTexture::new(spectrum));
Some(Arc::new(texture))
} else {
@ -73,3 +72,15 @@ impl CreateMaterial for SubsurfaceMaterial {
todo!()
}
}
impl CreateMaterial for MeasuredMaterial {
fn create(
_parameters: &TextureParameterDictionary,
_normal_map: Option<Arc<Image>>,
_named_materials: &HashMap<String, Material>,
_loc: &FileLoc,
_arena: &mut Arena,
) -> Result<Material> {
todo!()
}
}

View file

@ -3,4 +3,5 @@ pub mod complex;
pub mod conductor;
pub mod dielectric;
pub mod diffuse;
pub mod measured;
pub mod mix;

View file

@ -2,3 +2,8 @@ pub mod halton;
pub mod independent;
pub mod sobol;
pub mod stratified;
pub use halton::*;
pub use independent::*;
pub use sobol::*;
pub use stratified::*;

View file

@ -4,6 +4,7 @@ use crate::core::texture::FloatTexture;
use crate::shapes::mesh::BilinearPatchMesh;
use crate::utils::sampling::PiecewiseConstant2D;
use crate::utils::{Arena, FileLoc, ParameterDictionary};
use anyhow::Result;
use log::warn;
use shared::core::shape::Shape;
use shared::shapes::BilinearPatchShape;
@ -18,10 +19,10 @@ impl CreateShape for BilinearPatchShape {
_object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
_float_textures: HashMap<String, FloatTexture>,
_float_textures: HashMap<String, Arc<FloatTexture>>,
_loc: FileLoc,
_arena: &mut Arena,
) -> Result<Vec<Shape>, String> {
) -> Result<Vec<Shape>> {
let mut vertex_indices = parameters.get_int_array("indices");
let p = parameters.get_point3f_array("P");
let mut uv = parameters.get_point2f_array("uv");
@ -32,10 +33,9 @@ impl CreateShape for BilinearPatchShape {
if p.len() == 4 {
vertex_indices = vec![0, 1, 2, 3];
} else {
return Err(
return Err(anyhow!(
"Vertex indices \"indices\" must be provided with bilinear patch mesh shape."
.into(),
);
));
}
} else if vertex_indices.len() % 4 != 0 {
let excess = vertex_indices.len() % 4;
@ -49,9 +49,9 @@ impl CreateShape for BilinearPatchShape {
}
if p.is_empty() {
return Err(
"Vertex positions \"P\" must be provided with bilinear patch mesh shape.".into(),
);
return Err(anyhow!(
"Vertex positions \"P\" must be provided with bilinear patch mesh shape."
));
}
if !uv.is_empty() && uv.len() != p.len() {
@ -66,7 +66,7 @@ impl CreateShape for BilinearPatchShape {
for (_, &idx) in vertex_indices.iter().enumerate() {
if idx < 0 || idx as usize >= p.len() {
return Err(format!(
return Err(anyhow!(
"Bilinear patch mesh has out-of-bounds vertex index {} ({} \"P\" values were given). Discarding this mesh.",
idx,
p.len()
@ -85,26 +85,22 @@ impl CreateShape for BilinearPatchShape {
}
let filename = parameters.get_one_string("emissionfilename", "");
let mut image_dist = None;
if !filename.is_empty() {
let image_dist = if !filename.is_empty() {
if !uv.is_empty() {
warn!(
"\"emissionfilename\" is currently ignored for bilinear patches if \"uv\" coordinates have been provided--sorry!"
);
None
} else {
match Image::read(Path::new(&filename), None) {
Ok(mut im) => {
let im = Image::read(Path::new(&filename), None)?;
let mut img = im.image;
img.flip_y();
image_dist = Some(PiecewiseConstant2D::from_image(&img));
}
Err(e) => {
warn!("Failed to load emission image \"{}\": {}", filename, e);
}
}
}
Some(PiecewiseConstant2D::from_image(&img))
}
} else {
None
};
let host = BilinearPatchMesh::new(
&render_from_object,
@ -113,7 +109,7 @@ impl CreateShape for BilinearPatchShape {
p,
n,
uv,
None,
image_dist,
);
let host_arc = Arc::new(host);

View file

@ -2,6 +2,7 @@ use crate::Arena;
use crate::core::shape::CreateShape;
use crate::core::texture::FloatTexture;
use crate::utils::{FileLoc, ParameterDictionary};
use anyhow::{Result, anyhow};
use shared::Float;
use shared::core::geometry::{Normal3f, Point3f};
use shared::core::shape::Shape;
@ -14,6 +15,7 @@ use shared::utils::splines::{
use log::warn;
use std::collections::HashMap;
use std::sync::Arc;
pub fn create_curve(
render_from_object: Transform,
@ -60,17 +62,17 @@ impl CreateShape for CurveShape {
object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
_float_textures: HashMap<String, FloatTexture>,
_float_textures: HashMap<String, Arc<FloatTexture>>,
_loc: FileLoc,
_arena: &mut Arena,
) -> Result<Vec<Shape>, String> {
) -> Result<Vec<Shape>> {
let width = parameters.get_one_float("width", 1.0);
let width0 = parameters.get_one_float("width0", width);
let width1 = parameters.get_one_float("width1", width);
let degree = parameters.get_one_int("degree", 3);
if degree != 2 && degree != 3 {
return Err(format!(
return Err(anyhow!(
"Invalid degree {}: only degree 2 and 3 curves are supported.",
degree
));
@ -78,7 +80,7 @@ impl CreateShape for CurveShape {
let basis = parameters.get_one_string("basis", "bezier");
if basis != "bezier" && basis != "bspline" {
return Err(format!(
return Err(anyhow!(
"Invalid basis \"{}\": only \"bezier\" and \"bspline\" are supported.",
basis
));
@ -91,7 +93,7 @@ impl CreateShape for CurveShape {
if cp.len() <= degree as usize
|| ((cp.len() - 1 - degree as usize) % degree as usize) != 0
{
return Err(format!(
return Err(anyhow!(
"Invalid number of control points {}: for the degree {} Bezier basis {} + n * {} are required.",
cp.len(),
degree,
@ -102,7 +104,7 @@ impl CreateShape for CurveShape {
n_segments = (cp.len() - 1) / degree as usize;
} else {
if cp.len() < (degree + 1) as usize {
return Err(format!(
return Err(anyhow!(
"Invalid number of control points {}: for the degree {} b-spline basis, must have >= {}.",
cp.len(),
degree,
@ -118,7 +120,7 @@ impl CreateShape for CurveShape {
"ribbon" => CurveType::Ribbon,
"cylinder" => CurveType::Cylinder,
_ => {
return Err(format!("Unknown curve type \"{}\".", curve_type_str));
return Err(anyhow!("Unknown curve type \"{}\".", curve_type_str));
}
};
@ -128,7 +130,7 @@ impl CreateShape for CurveShape {
warn!("Curve normals are only used with \"ribbon\" type curves. Discarding.");
n.clear();
} else if n.len() != n_segments + 1 {
return Err(format!(
return Err(anyhow!(
"Invalid number of normals {}: must provide {} normals for ribbon curves with {} segments.",
n.len(),
n_segments + 1,
@ -136,9 +138,9 @@ impl CreateShape for CurveShape {
));
}
} else if curve_type == CurveType::Ribbon {
return Err(
"Must provide normals \"N\" at curve endpoints with ribbon curves.".to_string(),
);
return Err(anyhow!(
"Must provide normals \"N\" at curve endpoints with ribbon curves."
));
}
let use_gpu = false; // Replace with actual config check

View file

@ -1,10 +1,12 @@
use crate::core::shape::CreateShape;
use crate::core::texture::FloatTexture;
use crate::utils::{Arena, FileLoc, ParameterDictionary};
use anyhow::Result;
use shared::core::shape::Shape;
use shared::shapes::CylinderShape;
use shared::utils::Transform;
use std::collections::HashMap;
use std::sync::Arc;
impl CreateShape for CylinderShape {
fn create(
@ -12,10 +14,10 @@ impl CreateShape for CylinderShape {
object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
_float_textures: HashMap<String, FloatTexture>,
_float_textures: HashMap<String, Arc<FloatTexture>>,
_loc: FileLoc,
arena: &mut Arena,
) -> Result<Vec<Shape>, String> {
) -> Result<Vec<Shape>> {
let radius = parameters.get_one_float("radius", 1.);
let z_min = parameters.get_one_float("zmin", -1.);
let z_max = parameters.get_one_float("zmax", 1.);

View file

@ -1,10 +1,12 @@
use crate::core::shape::CreateShape;
use crate::core::texture::FloatTexture;
use crate::utils::{Arena, FileLoc, ParameterDictionary};
use anyhow::Result;
use shared::core::shape::Shape;
use shared::shapes::DiskShape;
use shared::utils::Transform;
use std::collections::HashMap;
use std::sync::Arc;
impl CreateShape for DiskShape {
fn create(
@ -12,10 +14,10 @@ impl CreateShape for DiskShape {
object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
_float_textures: HashMap<String, FloatTexture>,
_float_textures: HashMap<String, Arc<FloatTexture>>,
_loc: FileLoc,
arena: &mut Arena,
) -> Result<Vec<Shape>, String> {
) -> Result<Vec<Shape>> {
let height = parameters.get_one_float("height", 0.);
let radius = parameters.get_one_float("radius", 1.);
let inner_radius = parameters.get_one_float("innerradius", 0.);

View file

@ -3,12 +3,16 @@ pub mod curves;
pub mod cylinder;
pub mod disk;
pub mod mesh;
pub mod mesh;
pub mod sphere;
pub mod triangle;
// pub use bilinear::*;
pub use bilinear::*;
pub use curves::*;
pub use cylinder::*;
pub use disk::*;
pub use mesh::*;
pub use sphere::*;
pub use triangle::*;
use std::sync::{Arc, Mutex};

View file

@ -1,10 +1,12 @@
use crate::core::shape::CreateShape;
use crate::core::texture::FloatTexture;
use crate::utils::{Arena, FileLoc, ParameterDictionary};
use anyhow::Result;
use shared::core::shape::Shape;
use shared::shapes::SphereShape;
use shared::utils::Transform;
use std::collections::HashMap;
use std::sync::Arc;
impl CreateShape for SphereShape {
fn create(
@ -12,10 +14,10 @@ impl CreateShape for SphereShape {
object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
_float_textures: HashMap<String, FloatTexture>,
_float_textures: HashMap<String, Arc<FloatTexture>>,
_loc: FileLoc,
arena: &mut Arena,
) -> Result<Vec<Shape>, String> {
) -> Result<Vec<Shape>> {
let radius = parameters.get_one_float("radius", 1.);
let zmin = parameters.get_one_float("zmin", -radius);
let zmax = parameters.get_one_float("zmax", radius);

View file

@ -2,6 +2,7 @@ use crate::core::shape::{ALL_TRIANGLE_MESHES, CreateShape};
use crate::core::texture::FloatTexture;
use crate::shapes::mesh::TriangleMesh;
use crate::utils::{Arena, FileLoc, ParameterDictionary};
use anyhow::{Result, anyhow};
use log::warn;
use shared::core::shape::Shape;
use shared::shapes::TriangleShape;
@ -15,10 +16,10 @@ impl CreateShape for TriangleShape {
_object_from_render: Transform,
reverse_orientation: bool,
parameters: ParameterDictionary,
_float_texture: HashMap<String, FloatTexture>,
_float_texture: HashMap<String, Arc<FloatTexture>>,
_loc: FileLoc,
_arena: &mut Arena,
) -> Result<Vec<Shape>, String> {
) -> Result<Vec<Shape>> {
let mut vertex_indices = parameters.get_int_array("indices");
let p = parameters.get_point3f_array("P");
let mut uvs = parameters.get_point2f_array("uv");
@ -28,9 +29,9 @@ impl CreateShape for TriangleShape {
if vertex_indices.is_empty() {
if p.len() == 3 {
} else {
return Err(
"Vertex indices \"indices\" must be provided with triangle mesh.".to_string(),
);
return Err(anyhow!(
"Vertex indices \"indices\" must be provided with triangle mesh."
));
}
} else if vertex_indices.len() % 3 != 0 {
let excess = vertex_indices.len() % 3;
@ -44,7 +45,9 @@ impl CreateShape for TriangleShape {
}
if p.is_empty() {
return Err("Vertex positions \"P\" must be provided with triangle mesh.".to_string());
return Err(anyhow!(
"Vertex positions \"P\" must be provided with triangle mesh."
));
}
if !uvs.is_empty() && uvs.len() != p.len() {
@ -65,7 +68,7 @@ impl CreateShape for TriangleShape {
for (_, &index) in vertex_indices.iter().enumerate() {
// Check for negative indices (if keeping i32) or out of bounds
if index < 0 || index as usize >= p.len() {
return Err(format!(
return Err(anyhow!(
"TriangleMesh has out-of-bounds vertex index {} ({} \"P\" values were given). Discarding this mesh.",
index,
p.len()

View file

@ -3,6 +3,7 @@ use crate::spectra::colorspace::RGBColorSpaceData;
use shared::core::geometry::Point2f;
use shared::core::spectrum::Spectrum;
use shared::core::spectrum::StandardSpectra;
use shared::spectra::DeviceStandardColorSpaces;
use shared::spectra::cie::{CIE_D65, CIE_X, CIE_Y, CIE_Z};
use shared::utils::Ptr;
use std::sync::Arc;
@ -116,3 +117,12 @@ pub fn get_colorspace_context() -> StandardColorSpaces {
aces2065_1: ACES.clone().into(),
}
}
pub fn get_colorspace_device() -> DeviceStandardColorSpaces {
DeviceStandardColorSpaces {
srgb: Ptr::from(&SRGB.view),
dci_p3: Ptr::from(&DCI_P3.view),
rec2020: Ptr::from(&REC2020.view),
aces2065_1: Ptr::from(&ACES.view),
}
}

57
src/textures/bilerp.rs Normal file
View file

@ -0,0 +1,57 @@
use crate::core::texture::{CreateSpectrumTexture, FloatTextureTrait, SpectrumTextureTrait};
use anyhow::Result;
use shared::core::texture::SpectrumType;
use shared::{
textures::{FloatBilerpTexture, SpectrumBilerpTexture},
utils::Transform,
};
use crate::{
core::texture::FloatTexture,
utils::{FileLoc, TextureParameterDictionary},
};
pub trait CreateFloatBilerpTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl CreateFloatBilerpTexture for FloatBilerpTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl FloatTextureTrait for FloatBilerpTexture {
fn evaluate(&self, _ctx: &shared::core::texture::TextureEvalContext) -> shared::Float {
todo!()
}
}
impl CreateSpectrumTexture for SpectrumBilerpTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_spectrum_type: SpectrumType,
_loc: FileLoc,
) -> Result<SpectrumTexture> {
todo!()
}
}
impl SpectrumTextureTrait for SpectrumBilerpTexture {
fn evaluate(
&self,
_ctx: &shared::core::texture::TextureEvalContext,
_lambda: &shared::spectra::SampledWavelengths,
) -> shared::spectra::SampledSpectrum {
todo!()
}
}

View file

@ -0,0 +1,59 @@
use anyhow::Result;
use shared::{
core::texture::SpectrumType,
textures::{FloatCheckerboardTexture, SpectrumCheckerboardTexture},
utils::Transform,
};
use crate::{
core::texture::{
CreateSpectrumTexture, FloatTexture, FloatTextureTrait, SpectrumTexture,
SpectrumTextureTrait,
},
utils::{FileLoc, TextureParameterDictionary},
};
pub trait CreateFloatCheckerboardTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl CreateFloatCheckerboardTexture for FloatCheckerboardTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl FloatTextureTrait for FloatCheckerboardTexture {
fn evaluate(&self, _ctx: &shared::core::texture::TextureEvalContext) -> shared::Float {
todo!()
}
}
impl CreateSpectrumTexture for SpectrumCheckerboardTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_spectrum_type: SpectrumType,
_loc: FileLoc,
) -> Result<SpectrumTexture> {
todo!()
}
}
impl SpectrumTextureTrait for SpectrumCheckerboardTexture {
fn evaluate(
&self,
_ctx: &shared::core::texture::TextureEvalContext,
_lambda: &shared::spectra::SampledWavelengths,
) -> shared::spectra::SampledSpectrum {
todo!()
}
}

59
src/textures/constant.rs Normal file
View file

@ -0,0 +1,59 @@
use anyhow::Result;
use shared::{
core::texture::{SpectrumType, TextureEvalContext},
textures::{FloatConstantTexture, SpectrumConstantTexture},
utils::Transform,
};
use crate::{
core::texture::{
CreateSpectrumTexture, FloatTexture, FloatTextureTrait, SpectrumTextureTrait,
SpectrumTextureTrait,
},
utils::{FileLoc, TextureParameterDictionary},
};
pub trait CreateFloatConstantTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl CreateFloatConstantTexture for FloatConstantTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl FloatTextureTrait for FloatConstantTexture {
fn evaluate(&self, _ctx: &TextureEvalContext) -> shared::Float {
todo!()
}
}
impl CreateSpectrumTexture for SpectrumConstantTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_spectrum_type: SpectrumType,
_loc: FileLoc,
) -> Result<SpectrumTexture> {
todo!()
}
}
impl SpectrumTextureTrait for SpectrumConstantTexture {
fn evaluate(
&self,
_ctx: &TextureEvalContext,
_lambda: &shared::spectra::SampledWavelengths,
) -> shared::spectra::SampledSpectrum {
todo!()
}
}

55
src/textures/dots.rs Normal file
View file

@ -0,0 +1,55 @@
use anyhow::Result;
use shared::{
textures::{FloatDotsTexture, SpectrumDotsTexture},
utils::Transform,
};
use crate::{
core::texture::{CreateSpectrumTexture, FloatTexture, FloatTextureTrait, SpectrumTextureTrait},
utils::{FileLoc, TextureParameterDictionary},
};
pub trait CreateFloatDotsTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl FloatTextureTrait for FloatDotsTexture {
fn evaluate(&self, ctx: &shared::core::texture::TextureEvalContext) -> shared::Float {
todo!()
}
}
impl CreateFloatDotsTexture for FloatDotsTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl SpectrumTextureTrait for SpectrumScaledTexture {
fn evaluate(
&self,
_ctx: &shared::core::texture::TextureEvalContext,
_lambda: &shared::spectra::SampledWavelengths,
) -> shared::spectra::SampledSpectrum {
todo!()
}
}
impl CreateSpectrumTexture for SpectrumDotsTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_spectrum_type: SpectrumType,
_loc: FileLoc,
) -> Result<SpectrumTexture> {
todo!()
}
}

32
src/textures/fbm.rs Normal file
View file

@ -0,0 +1,32 @@
use anyhow::Result;
use shared::core::texture::TextureEvalContext;
use shared::{textures::FBmTexture, utils::Transform};
use crate::{
core::texture::{FloatTexture, FloatTextureTrait},
utils::{FileLoc, TextureParameterDictionary},
};
pub trait CreateFBmTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl CreateFBmTexture for FBmTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl FloatTextureTrait for FBmTexture {
fn evaluate(&self, _ctx: &TextureEvalContext) -> shared::Float {
todo!()
}
}

View file

@ -1,6 +1,10 @@
use crate::core::texture::{FloatTextureTrait, SpectrumTextureTrait};
use crate::core::texture::{
CreateSpectrumTexture, FloatTexture, FloatTextureTrait, SpectrumTexture, SpectrumTextureTrait,
};
use crate::core::texture::{TexInfo, get_texture_cache};
use crate::utils::TextureParameterDictionary;
use crate::utils::mipmap::{MIPMap, MIPMapFilterOptions};
use anyhow::Result;
use shared::Float;
use shared::core::color::ColorEncoding;
use shared::core::color::RGB;
@ -147,6 +151,17 @@ impl SpectrumTextureTrait for SpectrumImageTexture {
}
}
impl CreateSpectrumTexture for SpectrumImageTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_spectrum_type: SpectrumType,
_loc: FileLoc,
) -> Result<SpectrumTexture> {
todo!()
}
}
#[derive(Debug, Clone)]
pub struct FloatImageTexture {
pub base: ImageTextureBase,
@ -181,3 +196,21 @@ impl FloatTextureTrait for FloatImageTexture {
todo!()
}
}
pub trait CreateFloatImageTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl CreateFloatImageTexture for FloatImageTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}

23
src/textures/marble.rs Normal file
View file

@ -0,0 +1,23 @@
use crate::core::texture::{CreateSpectrumTexture, SpectrumTexture, SpectrumTextureTrait};
use shared::textures::MarbleTexture;
impl SpectrumTextureTrait for MarbleTexture {
fn evaluate(
&self,
_ctx: &shared::core::texture::TextureEvalContext,
_lambda: &shared::spectra::SampledWavelengths,
) -> shared::spectra::SampledSpectrum {
todo!()
}
}
impl CreateSpectrumTexture for MarbleTexture {
fn create(
render_from_texture: shared::utils::Transform,
parameters: crate::utils::TextureParameterDictionary,
spectrum_type: SpectrumType,
loc: crate::utils::FileLoc,
) -> anyhow::Result<SpectrumTexture> {
todo!()
}
}

View file

@ -1,7 +1,8 @@
use crate::core::texture::{
FloatTexture, FloatTextureTrait, SpectrumTexture, SpectrumTextureTrait,
CreateSpectrumTexture, FloatTexture, FloatTextureTrait, SpectrumTexture, SpectrumTextureTrait,
};
use crate::utils::{Arena, FileLoc, TextureParameterDictionary};
use anyhow::Result;
use shared::Float;
use shared::core::geometry::{Vector3f, VectorLike};
use shared::core::texture::TextureEvalContext;
@ -30,12 +31,12 @@ impl FloatMixTexture {
params: &TextureParameterDictionary,
_loc: &FileLoc,
_arena: &mut Arena,
) -> FloatTexture {
) -> Result<FloatTexture> {
let tex1 = params.get_float_texture("tex1", 0.);
let tex2 = params.get_float_texture("tex2", 1.);
let amount = params.get_float_texture("amount", 0.5);
// arena.alloc(Self::new(tex1, tex2, amount));
FloatTexture::Mix(Self::new(tex1, tex2, amount))
Ok(FloatTexture::Mix(Self::new(tex1, tex2, amount)))
}
}
@ -71,13 +72,13 @@ impl FloatDirectionMixTexture {
params: &TextureParameterDictionary,
_loc: &FileLoc,
_arena: &mut Arena,
) -> FloatTexture {
) -> Result<FloatTexture> {
let dir_raw = params.get_one_vector3f("dir", Vector3f::new(0., 1., 0.));
let dir = render_from_texture.apply_to_vector(dir_raw).normalize();
let tex1 = params.get_float_texture("tex1", 0.);
let tex2 = params.get_float_texture("tex2", 1.);
// arena.alloc(Self::new(tex1, tex2, dir))
FloatTexture::DirectionMix(Self::new(tex1, tex2, dir))
Ok(FloatTexture::DirectionMix(Self::new(tex1, tex2, dir)))
}
}
@ -94,6 +95,17 @@ pub struct SpectrumMixTexture {
pub amount: Arc<FloatTexture>,
}
impl CreateSpectrumTexture for SpectrumMixTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
spectrum_type: SpectrumType,
loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl SpectrumTextureTrait for SpectrumMixTexture {
fn evaluate(&self, _ctx: &TextureEvalContext, _lambda: &SampledWavelengths) -> SampledSpectrum {
todo!()
@ -107,6 +119,17 @@ pub struct SpectrumDirectionMixTexture {
pub dir: Vector3f,
}
impl CreateSpectrumTexture for SpectrumDirectionMixTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
spectrum_type: SpectrumType,
loc: FileLoc,
) -> Result<SpectrumTexture> {
todo!()
}
}
impl SpectrumTextureTrait for SpectrumDirectionMixTexture {
fn evaluate(&self, _ctx: &TextureEvalContext, _lambda: &SampledWavelengths) -> SampledSpectrum {
todo!()

View file

@ -1,9 +1,25 @@
pub mod image;
pub mod mix;
pub mod ptex;
pub mod scaled;
mod bilerp;
mod checkerboard;
mod constant;
mod dots;
mod fbm;
mod image;
mod marble;
mod mix;
mod ptex;
mod scaled;
mod windy;
mod wrinkled;
pub use bilerp::*;
pub use checkerboard::*;
pub use constant::*;
pub use dots::*;
pub use fbm::*;
pub use image::*;
pub use marble::*;
pub use mix::*;
pub use ptex::*;
pub use scaled::*;
pub use windy::*;
pub use wrinkled::*;

View file

@ -1,6 +1,7 @@
use crate::core::texture::{FloatTexture, SpectrumTexture};
use crate::core::texture::{CreateSpectrumTexture, FloatTexture, SpectrumTexture};
use crate::core::texture::{FloatTextureTrait, SpectrumTextureTrait};
use crate::utils::{Arena, FileLoc, TextureParameterDictionary};
use anyhow::Result;
use shared::Float;
use shared::core::texture::TextureEvalContext;
use shared::spectra::{SampledSpectrum, SampledWavelengths};
@ -23,7 +24,7 @@ impl FloatScaledTexture {
params: &TextureParameterDictionary,
_loc: &FileLoc,
_arena: &mut Arena,
) -> FloatTexture {
) -> Result<FloatTexture> {
let mut tex = params.get_float_texture("tex", 1.);
let mut scale = params.get_float_texture("scale", 1.);
@ -31,11 +32,11 @@ impl FloatScaledTexture {
if let FloatTexture::Constant(c_tex) = &*scale {
let cs = c_tex.value;
if cs == 1.0 {
return (*tex).clone();
return Ok((*tex).clone());
} else if let FloatTexture::Image(img_tex) = &*tex {
let mut image_copy = img_tex.clone();
image_copy.base.multiply_scale(cs);
return FloatTexture::Image(image_copy).into();
return Ok(FloatTexture::Image(image_copy));
}
}
@ -43,7 +44,10 @@ impl FloatScaledTexture {
}
std::mem::swap(&mut tex, &mut scale);
// arena.alloc(FloatScaledTexture::new(tex, scale));
FloatTexture::Scaled(FloatScaledTexture::new(tex.clone(), scale.clone()))
Ok(FloatTexture::Scaled(FloatScaledTexture::new(
tex.clone(),
scale.clone(),
)))
}
}
@ -63,6 +67,17 @@ pub struct SpectrumScaledTexture {
pub scale: Arc<FloatTexture>,
}
impl CreateSpectrumTexture for SpectrumScaledTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
spectrum_type: SpectrumType,
loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl SpectrumTextureTrait for SpectrumScaledTexture {
fn evaluate(&self, ctx: &TextureEvalContext, lambda: &SampledWavelengths) -> SampledSpectrum {
let sc = self.scale.evaluate(ctx);

31
src/textures/windy.rs Normal file
View file

@ -0,0 +1,31 @@
use anyhow::Result;
use shared::{textures::WindyTexture, utils::Transform};
use crate::{
core::texture::{FloatTexture, FloatTextureTrait},
utils::{FileLoc, TextureParameterDictionary},
};
pub trait CreateWindyTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl CreateWindyTexture for WindyTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl FloatTextureTrait for WindyTexture {
fn evaluate(&self, _ctx: &shared::core::texture::TextureEvalContext) -> shared::Float {
todo!()
}
}

31
src/textures/wrinkled.rs Normal file
View file

@ -0,0 +1,31 @@
use anyhow::Result;
use shared::{textures::WrinkledTexture, utils::Transform};
use crate::{
core::texture::{FloatTexture, FloatTextureTrait},
utils::{FileLoc, TextureParameterDictionary},
};
pub trait CreateWrinkledTexture {
fn create(
render_from_texture: Transform,
parameters: TextureParameterDictionary,
loc: FileLoc,
) -> Result<FloatTexture>;
}
impl CreateWrinkledTexture for WrinkledTexture {
fn create(
_render_from_texture: Transform,
_parameters: TextureParameterDictionary,
_loc: FileLoc,
) -> Result<FloatTexture> {
todo!()
}
}
impl FloatTextureTrait for WrinkledTexture {
fn evaluate(&self, _ctx: &shared::core::texture::TextureEvalContext) -> shared::Float {
todo!()
}
}

View file

@ -1,18 +1,21 @@
use crate::core::image::Image;
use crate::core::texture::{FloatTexture, SpectrumTexture};
use crate::shapes::{BilinearPatchMesh, TriangleMesh};
use crate::spectra::DenselySampledSpectrumBuffer;
use crate::utils::mipmap::MIPMap;
use crate::utils::sampling::PiecewiseConstant2D;
use crate::utils::sampling::{PiecewiseConstant2D, WindowedPiecewiseConstant2D};
use shared::core::color::RGBToSpectrumTable;
use shared::core::image::DeviceImage;
use shared::core::shape::Shape;
use shared::core::spectrum::Spectrum;
use shared::core::texture::{GPUFloatTexture, GPUSpectrumTexture};
use shared::spectra::{DeviceStandardColorSpaces, RGBColorSpace};
use shared::spectra::{DenselySampledSpectrum, DeviceStandardColorSpaces, RGBColorSpace};
use shared::textures::*;
use shared::utils::Ptr;
use shared::utils::mesh::{DeviceBilinearPatchMesh, DeviceTriangleMesh};
use shared::utils::sampling::{DevicePiecewiseConstant1D, DevicePiecewiseConstant2D};
use shared::utils::sampling::{
DevicePiecewiseConstant1D, DevicePiecewiseConstant2D, DeviceWindowedPiecewiseConstant2D,
};
use std::alloc::Layout;
use std::collections::HashMap;
use std::slice::from_raw_parts;
@ -166,6 +169,13 @@ impl Upload for Spectrum {
}
}
impl Upload for DenselySampledSpectrumBuffer {
type Target = DenselySampledSpectrum;
fn upload(&self, arena: &mut Arena) -> Ptr<Self::Target> {
arena.alloc(self.device)
}
}
impl Upload for SpectrumTexture {
type Target = GPUSpectrumTexture;
fn upload(&self, arena: &mut Arena) -> Ptr<Self::Target> {
@ -291,10 +301,6 @@ impl Upload for FloatTexture {
GPUFloatTexture::Image(gpu_image_tex)
}
// FloatTexture::Ptex(tex) => {
// todo!("Implement Ptex buffer upload")
// }
FloatTexture::Bilerp(tex) => GPUFloatTexture::Bilerp(tex.clone()),
};
@ -387,6 +393,17 @@ impl Upload for PiecewiseConstant2D {
}
}
impl Upload for WindowedPiecewiseConstant2D {
type Target = DeviceWindowedPiecewiseConstant2D;
fn upload(&self, arena: &mut Arena) -> Ptr<Self::Target> {
let specific = DeviceWindowedPiecewiseConstant2D {
sat: self.sat,
func: self.func,
};
arena.alloc(specific)
}
}
impl Upload for TriangleMesh {
type Target = DeviceTriangleMesh;

View file

@ -35,35 +35,36 @@ where
#[derive(Debug, Clone)]
pub struct Array2D<T> {
pub view: DeviceArray2D<T>,
_storage: Vec<T>,
pub device: DeviceArray2D<T>,
values: Vec<T>,
}
impl<T> Deref for Array2D<T> {
type Target = DeviceArray2D<T>;
fn deref(&self) -> &Self::Target {
&self.view
&self.device
}
}
impl<T> DerefMut for Array2D<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.view
&mut self.device
}
}
impl<T> Array2D<T> {
fn from_vec(extent: Bounds2i, mut storage: Vec<T>) -> Self {
pub fn as_slice(&self) -> &[T] {
&self.values
}
fn from_vec(extent: Bounds2i, mut values: Vec<T>) -> Self {
let width = extent.p_max.x() - extent.p_min.x();
let view = DeviceArray2D {
let device = DeviceArray2D {
extent,
values: storage.as_mut_ptr(),
stride: width,
};
Self {
view,
_storage: storage,
}
Self { device, values }
}
}

View file

@ -1,4 +1,4 @@
use crate::core::spectrum::SPECTRUM_CACHE;
use crate::core::spectrum::{SPECTRUM_CACHE, get_spectrum_cache};
use crate::core::texture::{FloatTexture, SpectrumTexture};
use crate::spectra::data::get_named_spectrum;
use crate::spectra::piecewise::PiecewiseLinearSpectrumBuffer;
@ -683,7 +683,7 @@ impl ParameterDictionary {
fn read_spectrum_from_file(filename: &str) -> Result<Spectrum, String> {
let fn_key = filename.to_string();
{
let cache = SPECTRUM_CACHE.lock();
let cache = SPECTRUM_FILE_CACHE.lock();
if let Some(s) = cache.get(&fn_key) {
return Ok(s.clone());
}
@ -695,7 +695,7 @@ fn read_spectrum_from_file(filename: &str) -> Result<Spectrum, String> {
let spectrum = Spectrum::Piecewise(*pls);
{
let mut cache = SPECTRUM_CACHE.lock();
let mut cache = SPECTRUM_FILE_CACHE.lock();
cache.insert(fn_key, spectrum.clone());
}