Initial commit

This commit is contained in:
pingupingou 2025-10-31 18:53:17 +00:00
parent 137ddfbd28
commit 87b3f8d6dd
20 changed files with 1438 additions and 682 deletions

1
.gitignore vendored
View file

@ -1,2 +1,3 @@
/target
*.lock
*.log

264
README.md Normal file
View file

@ -0,0 +1,264 @@
<!-- Improved compatibility of back to top link: See: https://github.com/othneildrew/Best-README-Template/pull/73 -->
<a id="readme-top"></a>
[![Contributors][contributors-shield]][contributors-url]
[![Forks][forks-shield]][forks-url]
[![Stargazers][stars-shield]][stars-url]
[![Issues][issues-shield]][issues-url]
[![Unlicense License][license-shield]][license-url]
[![LinkedIn][linkedin-shield]][linkedin-url]
<!-- PROJECT LOGO -->
<br />
<div align="center">
<a href="https://github.com/othneildrew/Best-README-Template">
<img src="images/logo.png" alt="Logo" width="80" height="80">
</a>
<h3 align="center">Best-README-Template</h3>
<p align="center">
An awesome README template to jumpstart your projects!
<br />
<a href="https://github.com/othneildrew/Best-README-Template"><strong>Explore the docs »</strong></a>
<br />
<br />
<a href="https://github.com/othneildrew/Best-README-Template">View Demo</a>
&middot;
<a href="https://github.com/othneildrew/Best-README-Template/issues/new?labels=bug&template=bug-report---.md">Report Bug</a>
&middot;
<a href="https://github.com/othneildrew/Best-README-Template/issues/new?labels=enhancement&template=feature-request---.md">Request Feature</a>
</p>
</div>
<!-- TABLE OF CONTENTS -->
<details>
<summary>Table of Contents</summary>
<ol>
<li>
<a href="#about-the-project">About The Project</a>
<ul>
<li><a href="#built-with">Built With</a></li>
</ul>
</li>
<li>
<a href="#getting-started">Getting Started</a>
<ul>
<li><a href="#prerequisites">Prerequisites</a></li>
<li><a href="#installation">Installation</a></li>
</ul>
</li>
<li><a href="#usage">Usage</a></li>
<li><a href="#roadmap">Roadmap</a></li>
<li><a href="#contributing">Contributing</a></li>
<li><a href="#license">License</a></li>
<li><a href="#contact">Contact</a></li>
<li><a href="#acknowledgments">Acknowledgments</a></li>
</ol>
</details>
<!-- ABOUT THE PROJECT -->
## About The Project
[![Product Name Screen Shot][product-screenshot]](https://example.com)
There are many great README templates available on GitHub; however, I didn't find one that really suited my needs so I created this enhanced one. I want to create a README template so amazing that it'll be the last one you ever need -- I think this is it.
Here's why:
* Your time should be focused on creating something amazing. A project that solves a problem and helps others
* You shouldn't be doing the same tasks over and over like creating a README from scratch
* You should implement DRY principles to the rest of your life :smile:
Of course, no one template will serve all projects since your needs may be different. So I'll be adding more in the near future. You may also suggest changes by forking this repo and creating a pull request or opening an issue. Thanks to all the people have contributed to expanding this template!
Use the `BLANK_README.md` to get started.
<p align="right">(<a href="#readme-top">back to top</a>)</p>
### Built With
This section should list any major frameworks/libraries used to bootstrap your project. Leave any add-ons/plugins for the acknowledgements section. Here are a few examples.
* [![Next][Next.js]][Next-url]
* [![React][React.js]][React-url]
* [![Vue][Vue.js]][Vue-url]
* [![Angular][Angular.io]][Angular-url]
* [![Svelte][Svelte.dev]][Svelte-url]
* [![Laravel][Laravel.com]][Laravel-url]
* [![Bootstrap][Bootstrap.com]][Bootstrap-url]
* [![JQuery][JQuery.com]][JQuery-url]
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- GETTING STARTED -->
## Getting Started
This is an example of how you may give instructions on setting up your project locally.
To get a local copy up and running follow these simple example steps.
### Prerequisites
This is an example of how to list things you need to use the software and how to install them.
* npm
```sh
npm install npm@latest -g
```
### Installation
_Below is an example of how you can instruct your audience on installing and setting up your app. This template doesn't rely on any external dependencies or services._
1. Get a free API Key at [https://example.com](https://example.com)
2. Clone the repo
```sh
git clone https://github.com/github_username/repo_name.git
```
3. Install NPM packages
```sh
npm install
```
4. Enter your API in `config.js`
```js
const API_KEY = 'ENTER YOUR API';
```
5. Change git remote url to avoid accidental pushes to base project
```sh
git remote set-url origin github_username/repo_name
git remote -v # confirm the changes
```
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- USAGE EXAMPLES -->
## Usage
Use this space to show useful examples of how a project can be used. Additional screenshots, code examples and demos work well in this space. You may also link to more resources.
_For more examples, please refer to the [Documentation](https://example.com)_
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- ROADMAP -->
## Roadmap
- [x] Add Changelog
- [x] Add back to top links
- [ ] Add Additional Templates w/ Examples
- [ ] Add "components" document to easily copy & paste sections of the readme
- [ ] Multi-language Support
- [ ] Chinese
- [ ] Spanish
See the [open issues](https://github.com/othneildrew/Best-README-Template/issues) for a full list of proposed features (and known issues).
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- CONTRIBUTING -->
## Contributing
Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are **greatly appreciated**.
If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement".
Don't forget to give the project a star! Thanks again!
1. Fork the Project
2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the Branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
### Top contributors:
<a href="https://github.com/othneildrew/Best-README-Template/graphs/contributors">
<img src="https://contrib.rocks/image?repo=othneildrew/Best-README-Template" alt="contrib.rocks image" />
</a>
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- LICENSE -->
## License
Distributed under the Unlicense License. See `LICENSE.txt` for more information.
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- CONTACT -->
## Contact
Your Name - [@your_twitter](https://twitter.com/your_username) - email@example.com
Project Link: [https://github.com/your_username/repo_name](https://github.com/your_username/repo_name)
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- ACKNOWLEDGMENTS -->
## Acknowledgments
Use this space to list resources you find helpful and would like to give credit to. I've included a few of my favorites to kick things off!
* [Choose an Open Source License](https://choosealicense.com)
* [GitHub Emoji Cheat Sheet](https://www.webpagefx.com/tools/emoji-cheat-sheet)
* [Malven's Flexbox Cheatsheet](https://flexbox.malven.co/)
* [Malven's Grid Cheatsheet](https://grid.malven.co/)
* [Img Shields](https://shields.io)
* [GitHub Pages](https://pages.github.com)
* [Font Awesome](https://fontawesome.com)
* [React Icons](https://react-icons.github.io/react-icons/search)
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- MARKDOWN LINKS & IMAGES -->
<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
[contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge
[contributors-url]: https://github.com/othneildrew/Best-README-Template/graphs/contributors
[forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge
[forks-url]: https://github.com/othneildrew/Best-README-Template/network/members
[stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge
[stars-url]: https://github.com/othneildrew/Best-README-Template/stargazers
[issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge
[issues-url]: https://github.com/othneildrew/Best-README-Template/issues
[license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge
[license-url]: https://github.com/othneildrew/Best-README-Template/blob/master/LICENSE.txt
[linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
[linkedin-url]: https://linkedin.com/in/othneildrew
[product-screenshot]: images/screenshot.png
[Next.js]: https://img.shields.io/badge/next.js-000000?style=for-the-badge&logo=nextdotjs&logoColor=white
[Next-url]: https://nextjs.org/
[React.js]: https://img.shields.io/badge/React-20232A?style=for-the-badge&logo=react&logoColor=61DAFB
[React-url]: https://reactjs.org/
[Vue.js]: https://img.shields.io/badge/Vue.js-35495E?style=for-the-badge&logo=vuedotjs&logoColor=4FC08D
[Vue-url]: https://vuejs.org/
[Angular.io]: https://img.shields.io/badge/Angular-DD0031?style=for-the-badge&logo=angular&logoColor=white
[Angular-url]: https://angular.io/
[Svelte.dev]: https://img.shields.io/badge/Svelte-4A4A55?style=for-the-badge&logo=svelte&logoColor=FF3E00
[Svelte-url]: https://svelte.dev/
[Laravel.com]: https://img.shields.io/badge/Laravel-FF2D20?style=for-the-badge&logo=laravel&logoColor=white
[Laravel-url]: https://laravel.com
[Bootstrap.com]: https://img.shields.io/badge/Bootstrap-563D7C?style=for-the-badge&logo=bootstrap&logoColor=white
[Bootstrap-url]: https://getbootstrap.com
[JQuery.com]: https://img.shields.io/badge/jQuery-0769AD?style=for-the-badge&logo=jquery&logoColor=white
[JQuery-url]: https://jquery.com

View file

@ -1,320 +1,478 @@
use num_traits::{Num, Bounded, Float as NumFloat};
use std::ops::{Sub, SubAssign, Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Index, IndexMut};
use std::sync::Arc;
use std::f32::consts::PI;
use crate::core::pbrt::Float;
use num_traits::{Num, Bounded};
use crate::core::pbrt;
use crate::core::medium::Medium;
pub trait Tuple<const N: usize, T> : Index<usize, Output = T> + IndexMut<usize> + Copy {
fn get(&self, i: usize) -> T;
fn set(&mut self, i: usize, val: T);
}
#[derive(Copy, Clone, PartialEq)]
pub struct Vector2<T> { pub x: T, pub y: T }
#[derive(Copy, Clone, PartialEq)]
pub struct Point2<T> { pub x: T, pub y: T }
#[derive(Copy, Clone, PartialEq)]
pub struct Vector3<T> { pub x: T, pub y: T, pub z: T }
#[derive(Copy, Clone, PartialEq)]
pub struct Normal3<T> { pub x: T, pub y: T, pub z: T }
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Point3<T> { pub x: T, pub y: T, pub z : T }
// Using macros to make this more concise
// This is pretty useful, gotta use it more often
macro_rules! impl_tuple_core {
($Struct:ident, [$($field:ident), +]) => {
impl<T> $Struct<T> {
pub fn new($($field: T), +) -> Self { Self { $($field), + }}
pub fn has_nan(&self) -> bool where T: num_traits::Float {
$(self.$field.is_nan())||+
}
}
impl<T: Num + Copy> $Struct<T> {
pub fn dot(self, other: Self) -> T {
let mut sum = T::zero();
$( sum = sum + self.$field * other.$field; )+
sum
}
pub fn abs_dot(self, other: Self) -> T {
self.dot(other).abs()
}
pub fn length_squared(self) -> T {
self.dot(self)
}
}
impl<T: num_traits::Float> $Struct<T> {
pub fn length(self) -> T {
self.length_squared().sqrt()
}
pub fn normalize(self) -> Self {
self / self.length()
}
}
impl<T: Neg<Output=T>> Neg for $Struct<T> {
type Output = Self;
fn neg(self) -> Self { Self::new($(-self.$field),+) }
}
impl<T: Mul<Output=T> + Copy> Mul<T> for $Struct<T> {
type Output = Self;
fn mul(self, s: T) -> Self { Self::new($(self.$field * s),+) }}
impl<T: MulAssign + Copy> MulAssign<T> for $Struct<T> {
fn mul_assign(&mut self, s: T) { $(self.$field *= s;)+ }
}
impl<T: Div<Output=T> + Copy> Div<T> for $Struct<T> {
type Output = Self;
fn div(self, s: T) -> Self { Self::new($(self.$field / s),+) }
}
impl<T: DivAssign + Copy> DivAssign<T> for $Struct<T> {
fn div_assign(&mut self, s: T) { $(self.$field /= s;)+ }
}
// Indexing
impl<T> Index<usize> for $Struct<T> {
type Output = T;
fn index(&self, i: usize) -> &T {
let mut idx = 0;
$( if i == idx { return &self.$field; } idx += 1; )+
panic!("Index out of bounds");
}
}
impl<T> IndexMut<usize> for $Struct<T> {
fn index_mut(&mut self, i: usize) -> &mut T {
let mut idx = 0;
$( if i == idx { return &mut self.$field; } idx += 1; )+
panic!("Index out of bounds");
}
}
};
}
macro_rules! impl_tuple_ops {
($Struct:ident) => {
impl<T: Add<Output=T>> Add for $Struct<T> {
type Output = Self;
fn add(self, rhs: Self) -> Self { Self::new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z) }
}
impl<T: AddAssign + Copy> AddAssign for $Struct<T> {
fn add_assign(&mut self, rhs: Self)
{ self.x += rhs.x; self.y += rhs.y; self.z += rhs.z; }
}
impl<T: Sub<Output=T>> Sub for $Struct<T> {
type Output = Self;
fn sub(self, rhs: Self) -> Self { Self::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z) }
}
impl<T: SubAssign + Copy> SubAssign for $Struct<T> {
fn sub_assign(&mut self, rhs: Self) { self.x -= rhs.x; self.y -= rhs.y; self.z -= rhs.z; }
}
};
}
impl_tuple_core!(Vector3, [x, y, z]);
impl_tuple_core!(Normal3, [x, y, z]);
impl_tuple_core!(Point2, [x, y]);
impl_tuple_core!(Point3, [x, y, z]);
impl_tuple_ops!(Vector3);
impl_tuple_ops!(Normal3);
// Point - Point -> Vector
impl<T: Sub<Output = T>> Sub<Point3<T>> for Point3<T> {
type Output = Vector3<T>;
fn sub(self, rhs: Point3<T>) -> Vector3<T> {
Vector3::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
}
}
// Point + Vector -> Point
impl<T: Add<Output = T>> Add<Vector3<T>> for Point3<T> {
type Output = Point3<T>;
fn add(self, rhs: Vector3<T>) -> Point3<T> {
Point3::new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z)
}
}
impl<T: AddAssign + Copy> AddAssign<Vector3<T>> for Point3<T> {
fn add_assign(&mut self, rhs: Vector3<T>) {
self.x += rhs.x;
self.y += rhs.y;
self.z += rhs.z;
}
}
// Point - Vector -> Point
impl<T: Sub<Output = T>> Sub<Vector3<T>> for Point3<T> {
type Output = Point3<T>;
fn sub(self, rhs: Vector3<T>) -> Point3<T> {
Point3::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
}
}
impl<T: SubAssign + Copy> SubAssign<Vector3<T>> for Point3<T> {
fn sub_assign(&mut self, rhs: Vector3<T>) {
self.x -= rhs.x;
self.y -= rhs.y;
self.z -= rhs.z;
}
}
impl<T: Num + Copy> Vector3<T> {
pub fn cross(self, other: Vector3<T>) -> Vector3<T> {
Vector3 {
x: self.y * other.z - self.z * other.y,
y: self.z * other.x - self.x * other.z,
z: self.x * other.y - self.y * other.x,
}
}
}
pub trait Norm {
type Scalar;
fn norm(self) -> Self::Scalar;
fn norm_squared(self) -> Self::Scalar;
}
impl<T: num_traits::Float> Norm for Vector2<T> {
type Scalar = T;
fn norm(self) -> T { self.length_squared().sqrt() }
fn norm_squared(self) -> T { self.length_squared }
}
pub fn distance<T, const N: usize>(p1: Point2<T>, p2: Point2<T>) -> T
where
T: num_traits::Float,
Point2<T>: Sub<Output = Vector2<T>>,
Vector2<T>: Copy + Mul<Output = T>,
pub trait Tuple<T, const N: usize>:
Sized + Copy + Index<usize, Output = T> + IndexMut<usize>
{
(p1 - p2).length()
}
pub fn distance_squared<T>(p1: Point2<T>) {
}
pub type Point3f = Point3<Float>;
pub type Point3i = Point3<i32>;
pub type Vector3f = Vector3<Float>;
pub type Vector3i = Vector3<i32>;
pub type Normal3f = Normal3<Float>;
pub type Normal3i = Normal3<i32>;
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Bounds3<T> {
pub p_min: Point3<T>,
pub p_max: Point3<T>,
}
impl<T> Default for Bounds3<T>
where
T: Num + Bounded
{
fn default() -> Self {
Self {
p_min: Point3::new(T::max_value(), T::max_value(), T::max_value()),
p_max: Point3::new(T::min_value(), T::min_value(), T::min_value()),
}
}
}
impl<T> Bounds3<T>
where
T: Num + PartialOrd + Copy,
{
pub fn from_point(p: Point3<T>) -> Self {
Self { p_min: p, p_max: p }
}
pub fn from_points(p1: Point3<T>, p2: Point3<T>) -> Self {
Self {
p_min: Point3::new(
if p1.x < p2.x { p1.x } else { p2.x },
if p1.y < p2.y { p1.y } else { p2.y },
if p1.z < p2.z { p1.z } else { p2.z },
),
p_max: Point3::new(
if p1.x > p2.x { p1.x } else { p2.x },
if p1.y > p2.y { p1.y } else { p2.y },
if p1.z > p2.z { p1.z } else { p2.z },
),
}
}
pub fn diagonal(&self) -> Vector3<T> {
self.p_max - self.p_min
}
pub fn surface_area(&self) -> T {
let d = self.diagonal();
let two = T::one() + T::one();
two * (d.x * d.y + d.x * d.z + d.y * d.z)
}
pub fn volume(&self) -> T {
let d = self.diagonal();
d.x * d.y * d.z
}
pub fn is_empty(&self) -> bool {
self.p_min.x >= self.p_max.x || self.p_min.y >= self.p_max.y || self.p_min.z >= self.p_max.z
}
pub fn max_dimension(&self) -> usize {
let d = self.diagonal();
if d.x > d.y && d.x > d.z {
0
} else if d.y > d.z {
1
} else {
2
}
}
pub fn offset(p: Point3<T>) {}
fn data(&self) -> &[T; N];
fn data_mut(&mut self) -> &mut [T; N];
fn from_array(arr: [T; N]) -> Self;
}
fn min<T: PartialOrd>(a: T, b: T) -> T { if a < b { a } else { b }}
fn max<T: PartialOrd>(a: T, b: T) -> T { if a > b { a } else { b }}
pub fn union_bounds_point<T: PartialOrd + Copy>(b: Bounds3<T>, p: Point3<T>) -> Bounds3<T> {
Bounds3 {
p_min: Point3::new(min(b.p_min.x, p.x), min(b.p_min.y, p.y), min(b.p_min.z, p.z)),
p_max: Point3::new(max(b.p_max.x, p.x), max(b.p_max.y, p.y), max(b.p_max.z, p.z)),
// N-dimensional displacement
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Vector<T, const N: usize>(pub [T; N]);
// N-dimensional location
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Point<T, const N: usize>(pub [T; N]);
// N-dimensional surface normal
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Normal<T, const N: usize>(pub [T; N]);
macro_rules! impl_tuple_core {
($Struct:ident) => {
impl<T: Copy, const N: usize> Tuple<T, N> for $Struct<T, N> {
#[inline] fn data(&self) -> &[T; N] { &self.0 }
#[inline] fn data_mut(&mut self) -> &mut [T; N] { &mut self.0 }
#[inline] fn from_array(arr: [T; N]) -> Self { Self(arr) }
}
impl<T: Default + Copy, const N: usize> Default for $Struct<T, N> {
fn default() -> Self {
Self([T::default(); N])
}
}
pub fn union_bounds<T: PartialOrd + Copy>(b1: Bounds3<T>, b2: Bounds3<T>) -> Bounds3<T> {
Bounds3 {
p_min: Point3::new(min(b1.p_min.x, b2.p_min.x), min(b1.p_min.y, b2.p_min.y), min(b1.p_min.z, b2.p_min.z)),
p_max: Point3::new(max(b1.p_max.x, b2.p_max.x), max(b1.p_max.y, b2.p_max.y), max(b1.p_max.z, b2.p_max.z)),
impl<T, const N: usize> Index<usize> for $Struct<T, N> {
type Output = T;
#[inline] fn index(&self, index: usize) -> &Self::Output { &self.0[index] }
}
impl<T, const N: usize> IndexMut<usize> for $Struct<T, N> {
#[inline] fn index_mut(&mut self, index: usize) -> &mut Self::Output { &mut self.0[index] }
}
impl<T, const N: usize> Neg for $Struct<T, N> where T: Neg<Output = T> + Copy {
type Output = Self;
fn neg(self) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = -result[i]; }
Self(result)
}
}
pub fn face_forward_v(v: Vector3f, n: Normal3f) -> Vector3f {
if v.dot(Vector3::new(n.x, n.y, n.z)) < 0.0 { -v } else { v }
impl<T, const N: usize> Mul<T> for $Struct<T, N> where T: Mul<Output = T> + Copy {
type Output = Self;
fn mul(self, rhs: T) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = result[i] * rhs; }
Self(result)
}
}
impl<T, const N: usize> MulAssign<T> for $Struct<T, N> where T: MulAssign + Copy {
fn mul_assign(&mut self, rhs: T) {
for i in 0..N { self.0[i] *= rhs; }
}
}
pub fn face_forward_n(n1: Normal3f, n2: Normal3f) -> Normal3f {
if n1.dot(n2) < 0.0 { -n1 } else { n1 }
impl<T, const N: usize> Div<T> for $Struct<T, N> where T: Div<Output = T> + Copy {
type Output = Self;
fn div(self, rhs: T) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = result[i] / rhs; }
Self(result)
}
}
impl<T, const N: usize> DivAssign<T> for $Struct<T, N> where T: DivAssign + Copy {
fn div_assign(&mut self, rhs: T) {
for i in 0..N { self.0[i] /= rhs; }
}
}
pub fn coordinate_system(v1: Vector3f) -> (Vector3f, Vector3f) {
let v2 = if v1.x.abs() > v1.y.abs() {
Vector3::new(-v1.z, 0.0, v1.x) / (v1.x * v1.x + v1.z * v1.z).sqrt()
} else {
Vector3::new(0.0, v1.z, -v1.y) / (v1.y * v1.y + v1.z * v1.z).sqrt()
};
let v3 = v1.cross(v2);
(v2, v3)
}
impl_tuple_core!(Vector);
impl_tuple_core!(Point);
impl_tuple_core!(Normal);
macro_rules! impl_tuple_ops {
($Struct:ident) => {
impl<T, const N: usize> Add for $Struct<T, N> where T: Add<Output = T> + Copy {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = self.0[i] + rhs.0[i]; }
Self(result)
}
}
impl<T, const N: usize> AddAssign for $Struct<T, N> where T: AddAssign + Copy {
fn add_assign(&mut self, rhs: Self) {
for i in 0..N { self.0[i] += rhs.0[i]; }
}
}
impl<T, const N: usize> Sub for $Struct<T, N> where T: Sub<Output = T> + Copy {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = self.0[i] - rhs.0[i]; }
Self(result)
}
}
impl<T, const N: usize> SubAssign for $Struct<T, N> where T: SubAssign + Copy {
fn sub_assign(&mut self, rhs: Self) {
for i in 0..N { self.0[i] -= rhs.0[i]; }
}
}
};
}
impl_tuple_ops!(Vector);
impl_tuple_ops!(Normal);
impl<T: Copy, const N: usize> From<Vector<T, N>> for Normal<T, N> {
fn from(v: Vector<T, N>) -> Self { Self(v.0) }
}
impl<T: Copy, const N: usize> From<Normal<T, N>> for Vector<T, N> {
fn from(n: Normal<T, N>) -> Self { Self(n.0) }
}
impl<T, const N: usize> Sub for Point<T, N> where T: Sub<Output = T> + Copy {
type Output = Vector<T, N>;
fn sub(self, rhs: Self) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = self.0[i] - rhs.0[i]; }
Vector(result)
}
}
// Point + Vector -> Point
impl<T, const N: usize> Add<Vector<T, N>> for Point<T, N> where T: Add<Output = T> + Copy {
type Output = Self;
fn add(self, rhs: Vector<T, N>) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = self.0[i] + rhs.0[i]; }
Self(result)
}
}
impl<T, const N: usize> AddAssign<Vector<T, N>> for Point<T, N> where T: AddAssign + Copy {
fn add_assign(&mut self, rhs: Vector<T, N>) {
for i in 0..N { self.0[i] += rhs.0[i]; }
}
}
// Point - Vector -> Point
impl<T, const N: usize> Sub<Vector<T, N>> for Point<T, N> where T: Sub<Output = T> + Copy {
type Output = Self;
fn sub(self, rhs: Vector<T, N>) -> Self::Output {
let mut result = self.0;
for i in 0..N { result[i] = self.0[i] - rhs.0[i]; }
Self(result)
}
}
impl<T, const N: usize> SubAssign<Vector<T, N>> for Point<T, N> where T: SubAssign + Copy {
fn sub_assign(&mut self, rhs: Vector<T, N>) {
for i in 0..N { self.0[i] -= rhs.0[i]; }
}
}
macro_rules! impl_accessors {
($Struct:ident) => {
impl<T: Copy> $Struct<T, 2> {
pub fn x(&self) -> T { self.0[0] }
pub fn y(&self) -> T { self.0[1] }
}
impl<T: Copy> $Struct<T, 3> {
pub fn x(&self) -> T { self.0[0] }
pub fn y(&self) -> T { self.0[1] }
pub fn z(&self) -> T { self.0[2] }
}
};
}
impl_accessors!(Vector);
impl_accessors!(Point);
impl_accessors!(Normal);
// Vector stuff
pub trait Dot<Rhs = Self> {
type Output;
fn dot(self, rhs: Rhs) -> Self::Output;
}
pub trait Normed {
type Scalar;
fn norm_squared(&self) -> Self::Scalar;
fn norm(&self) -> Self::Scalar where Self::Scalar: NumFloat { self.norm_squared().sqrt() }
fn normalize(self) -> Self where Self: Sized, Self: Div<Self::Scalar, Output=Self>, Self::Scalar: NumFloat;
}
macro_rules! impl_vector_math_for {
($Struct:ident) => {
impl<T: Num + Copy, const N: usize> Dot for $Struct<T, N> {
type Output = T;
fn dot(self, rhs: Self) -> T {
let mut sum = T::zero();
for i in 0..N { sum = sum + self[i] * rhs[i]; }
sum
}
}
impl<T: Num + Copy, const N: usize> Normed for $Struct<T, N> {
type Scalar = T;
fn norm_squared(&self) -> T { self.dot(*self) }
fn normalize(self) -> Self where Self: Div<T, Output=Self>, T: NumFloat { self / self.norm() }
}
};
}
impl_vector_math_for!(Vector);
impl_vector_math_for!(Normal);
impl<T, const N: usize> Point<T, N>
where
T: NumFloat + Copy,
Point<T, N>: Sub<Output = Vector<T, N>>, // Point - Point -> Vector
Vector<T, N>: Normed<Scalar = T>, // Vector has a norm
{
pub fn distance(self, other: Self) -> T {
(self - other).norm()
}
pub fn distance_squared(self, other: Self) -> T {
(self - other).norm_squared()
}
}
// Utility aliases and functions
pub type Point2<T> = Point<T, 2>;
pub type Point3<T> = Point<T, 3>;
pub type Point3f = Point3<Float>;
pub type Point3i = Point3<i32>;
pub type Vector2<T> = Vector<T, 2>;
pub type Vector3<T> = Vector<T, 3>;
pub type Vector3f = Vector3<Float>;
pub type Vector3i = Vector3<i32>;
pub type Normal3<T> = Normal<T, 3>;
pub type Normal3f = Normal3<Float>;
pub type Normal3i = Normal3<i32>;
impl<T: Copy> Vector2<T> { pub fn new(x: T, y: T) -> Self { Self([x, y]) } }
impl<T: Copy> Point2<T> { pub fn new(x: T, y: T) -> Self { Self([x, y]) } }
impl<T: Copy> Vector3<T> { pub fn new(x: T, y: T, z: T) -> Self { Self([x, y, z]) } }
impl<T: Copy> Point3<T> { pub fn new(x: T, y: T, z: T) -> Self { Self([x, y, z]) } }
impl<T: Copy> Normal3<T> { pub fn new(x: T, y: T, z: T) -> Self { Self([x, y, z]) } }
// Vector operations
impl<T> Vector3<T>
where T: Num + Copy + Neg<Output = T>
{
pub fn cross(self, rhs: Self) -> Self {
Self([
self[1] * rhs[2] - self[2] * rhs[1],
self[2] * rhs[0] - self[0] * rhs[2],
self[0] * rhs[1] - self[1] * rhs[0],
])
}
}
impl<T> Vector3<T>
where T: Num + NumFloat + Copy + Neg<Output = T>
{
pub fn coordinate_system(&self) -> (Self, Self) where T: NumFloat {
let v2 = if self[0].abs() > self[1].abs() {
Self::new(-self[2], T::zero(), self[0]) / (self[0] * self[0] + self[2] * self[2]).sqrt()
} else {
Self::new(T::zero(), self[2], -self[1]) / (self[1] * self[1] + self[2] * self[2]).sqrt()
};
(v2, self.cross(v2))
}
}
impl<T> Normal3<T>
where T: Num + PartialOrd + Copy + Neg<Output = T>
{
pub fn face_forward(self, v: Vector3<T>) -> Self {
if self.dot(v.into()) < T::zero() { -self } else { self }
}
}
// SPHERICAL GEOMETRY
pub fn spherical_direction<T: NumFloat>(sin_theta: Float, cos_theta: Float, phi: Float) -> Vector3f {
Vector3f::new(sin_theta * phi.cos(), sin_theta * phi.sin(), cos_theta)
}
pub fn spherical_triangle_area<T: NumFloat>(a: Vector3f, b: Vector3f, c: Vector3f) -> Float {
(2.0 * (a.dot(b.cross(c))).atan2(1.0 + a.dot(b) + a.dot(c) + b.dot(c))).abs()
}
pub fn spherical_theta<T: NumFloat>(v: Vector3f) -> Float {
pbrt::clamp_t(v.z(), -1.0, 1.0).acos()
}
pub fn spherical_phi<T: NumFloat>(v: Vector3f) -> Float {
let p = v.y().atan2(v.x());
if p < 0.0 {
p + 2.0 * PI
} else {
p
}
}
// AABB bouding boxes
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Bounds<T, const N: usize> {
pub p_min: Point<T, N>,
pub p_max: Point<T, N>,
}
impl<T, const N: usize> Bounds<T, N>
where
T: Num + PartialOrd + Copy
{
pub fn from_point(p: Point<T, N>) -> Self {
Self { p_min: p, p_max: p }
}
pub fn from_points(p1: Point<T, N>, p2: Point<T, N>) -> Self {
let mut p_min_arr = [T::zero(); N];
let mut p_max_arr = [T::zero(); N];
for i in 0..N {
if p1[i] < p2[i] {
p_min_arr[i] = p1[i];
p_max_arr[i] = p2[i];
} else {
p_min_arr[i] = p2[i];
p_max_arr[i] = p1[i];
}
}
Self { p_min: Point(p_min_arr), p_max: Point(p_max_arr) }
}
pub fn union_point(self, p: Point<T, N>) -> Self {
let mut p_min = self.p_min;
let mut p_max = self.p_max;
for i in 0..N {
p_min[i] = min(p_min[i], p[i]);
p_max[i] = max(p_max[i], p[i]);
}
Self { p_min, p_max }
}
pub fn union(self, b2: Self) -> Self {
let mut p_min = self.p_min;
let mut p_max = self.p_max;
for i in 0..N {
p_min[i] = min(p_min[i], b2.p_min[i]);
p_max[i] = max(p_max[i], b2.p_max[i]);
}
Self { p_min, p_max }
}
pub fn diagonal(&self) -> Vector<T, N> {
self.p_max - self.p_min
}
pub fn volume(&self) -> T {
let d = self.diagonal();
d.0.iter().fold(T::one(), |acc, &val| acc * val)
}
pub fn lerp(&self, t: Point<T, N>) -> Point<T, N>
{
let mut results_arr = [T::zero(); N];
for i in 0..N {
results_arr[i] = pbrt::lerp(t[i], self.p_min[i], self.p_max[i])
}
Point(results_arr)
}
pub fn max_dimension(&self) -> usize
where
Point<T, N>: Sub<Output = Vector<T, N>>,
{
let d = self.diagonal();
let mut max_dim = 0;
let mut max_span = d[0];
for i in 1..N {
if d[i] > max_span {
max_span = d[i];
max_dim = i;
}
}
max_dim
}
pub fn offset(&self, p: &Point<T, N>) -> Vector<T, N>
where
Point<T, N>: Sub<Output = Vector<T, N>>,
Vector<T, N>: DivAssign<T>
{
let mut o = *p - self.p_min;
let d = self.diagonal();
for i in 0..N {
if d[i] > T::zero() {
o[i] = o[i] / d[i];
}
}
o
}
pub fn contains(&self, p: Point<T, N>) -> bool {
(0..N).all(|i| p[i] >= self.p_min[i] && p[i] <= self.p_max[i])
}
pub fn contains_exclusive(&self, p: Point<T, N>) -> bool {
(0..N).all(|i| p[i] >= self.p_min[i] && p[i] < self.p_max[i])
}
pub fn is_empty(&self) -> bool {
(0..N).any(|i| self.p_min[i] >= self.p_max[i])
}
pub fn is_degenerate(&self) -> bool {
(0..N).any(|i| self.p_min[i] > self.p_max[i])
}
}
impl<T, const N: usize> Default for Bounds<T, N>
where
T: Bounded + Copy,
{
fn default() -> Self {
Self {
p_min: Point([T::max_value(); N]),
p_max: Point([T::min_value(); N]),
}
}
}
pub type Bounds2<T> = Bounds<T, 2>;
pub type Bounds3<T> = Bounds<T, 3>;
pub type Bounds3f = Bounds3<Float>;
impl<T> Bounds3<T>
where
T: Num + PartialOrd + Copy + Default
{
pub fn surface_area(&self) -> T {
let d = self.diagonal();
let two = T::one() + T::one();
two * (d.x() * d.y() + d.x() * d.z() + d.y() * d.z())
}
pub fn bounding_sphere(&self) -> (Point3<T>, T)
where
<<Point3<T> as Sub>::Output as Normed>::Scalar: NumFloat,
{
let two = T::one() + T::one();
let center = (self.p_min + self.diagonal()) / two;
let radius = if self.contains(center) { center.distance(self.p_max) } else { T::zero() };
(center, radius)
}
}
#[derive(Copy, Clone, Default, PartialEq)]
@ -326,7 +484,7 @@ pub struct Frame {
impl Frame {
pub fn from_z(z: Vector3f) -> Self {
let (x, y) = coordinate_system(z.normalize());
let (x, y) = z.normalize().coordinate_system();
Self { x, y, z: z.normalize() }
}
@ -335,62 +493,39 @@ impl Frame {
}
pub fn from_local(&self, v: Vector3f) -> Vector3f {
self.x * v.x + self.y * v.y + self.z * v.z
}
}
#[derive(Copy, Clone, PartialEq)]
pub struct Quaternion {
pub v: Vector3f,
pub w: Float,
}
impl Default for Quaternion {
fn default() -> Self {
Self { v: Vector3f::default(), w: 1.0 }
self.x * v.x() + self.y * v.y() + self.z * v.z()
}
}
impl Add for Quaternion {
type Output = Self;
fn add(self, rhs: Quaternion) -> Self {
Self { v: self.v + rhs.v, w: self.w + rhs.w }
#[derive(Clone, Default)]
pub struct Ray {
pub o: Point3f,
pub d: Vector3f,
pub medium: Option<Arc<Medium>>,
pub time: Float,
// We do this instead of creating a trait for Rayable or some gnarly thing like that
pub differential: Option<RayDifferential>,
}
impl Ray {
pub fn operator(&self, t: Float) -> Point3f {
self.o + self.d * t
}
pub fn scale_differentials(&mut self, s: Float) {
if let Some(differential) = &mut self.differential {
differential.rx_origin = self.o + (differential.rx_origin - self.o) * s;
differential.ry_origin = self.o + (differential.ry_origin - self.o) * s;
differential.rx_direction = self.d + (differential.rx_direction - self.d) * s;
differential.ry_direction = self.d + (differential.ry_direction - self.d) * s;
}
}
}
impl AddAssign for Quaternion {
fn add_assign(&mut self, rhs: Self) { self.v += rhs.v; self.w += rhs.w; }
}
impl Sub for Quaternion {
type Output = Self;
fn sub(self, rhs: Self) -> Self { Self { v: self.v - rhs.v, w: self.w - rhs.w }}
}
impl SubAssign for Quaternion {
fn sub_assign(&mut self, rhs: Self) { self.v -= rhs.v; self.w -= rhs.w; }
}
impl Mul<Float> for Quaternion {
type Output = Self;
fn mul(self, rhs: Float) -> Self { Self { v: self.v * rhs, w: self.w * rhs }}
}
impl MulAssign<Float> for Quaternion {
fn mul_assign(&mut self, rhs: Float) { self.v *= rhs; self.w *= rhs; }
}
impl Div<Float> for Quaternion {
type Output = Self;
fn div(self, rhs: Float) -> Self { Self { v: self.v / rhs, w: self.w / rhs }}
}
impl DivAssign<Float> for Quaternion {
fn div_assign(&mut self, rhs: Float) { self.v /= rhs; self.w /= rhs; }
}
impl Neg for Quaternion {
type Output = Self;
fn neg(self) -> Self { Self { v: -self.v, w: -self.w }}
#[derive(Debug, Default, Copy, Clone)]
pub struct RayDifferential {
pub rx_origin: Point3f,
pub ry_origin: Point3f,
pub rx_direction: Vector3f,
pub ry_direction: Vector3f,
}

View file

@ -1,8 +1,14 @@
use std::sync::Arc;
pub struct BPDTIntegrator;
pub struct MLTIntegrator;
pub struct SPPMIntegrator;
pub struct SamplerIntegrator;
use crate::core::primitive::Primitive;
pub struct Integrator {
aggregate: Arc<Primitive>,
lights: Vec<Arc<Light>>,
pub enum Integrator {
BPDT(BPDTIntegrator),
MLT(MLTIntegrator),
SPPM(SPPMIntegrator),
Sampler(SamplerIntegrator),
}
impl Integrator {
}

View file

@ -0,0 +1,17 @@
pub struct DiffuseAreaLight;
pub struct DistantLight;
pub struct GonioPhotometricLight;
pub struct InfiniteAreaLight;
pub struct PointLight;
pub struct ProjectionLight;
pub struct SpotLight;
pub enum Light {
DiffuseArea(Box<DiffuseAreaLight>),
Distant(Box<DistantLight>),
GonioPhotometric(Box<GonioPhotometricLight>),
InfiniteArea(Box<InfiniteAreaLight>),
Point(Box<PointLight>),
Projection(Box<ProjectionLight>),
Spot(Box<SpotLight>),
}

View file

@ -25,20 +25,4 @@ pub enum Material {
}
impl Material {
pub fn get_bsdf<T: TextureEvaluator>(
&self, tex_eval: T, ctx: MaterialEvalContext, lambda: &mut SampledWavelengths, buf: &mut ScratchBuffer) -> BSDF {
match self {
Material::CoatedDiffuse(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::CoatedConductor(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::Conductor(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::Dielectric(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::Diffuse(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::DiffuseTransmission(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::Hair(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::Measured(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::Subsurface(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::ThinDielectric(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
Material::Mix(m) => m.get_bsdf(tex_eval, ctx, lambda, buf),
}
}
}

52
src/core/medium.rs Normal file
View file

@ -0,0 +1,52 @@
use std::sync::Arc;
pub struct HomogeneousMedium;
pub struct GridMedium;
pub struct RGBGridMedium;
pub struct CloudMedium;
pub struct NanoVDBMedium;
pub enum Medium {
Homogeneous(HomogeneousMedium),
Grid(GridMedium),
RGBGrid(RGBGridMedium),
Cloud(CloudMedium),
NanoVDB(NanoVDBMedium),
}
#[derive(Default, Clone)]
pub struct MediumInterface {
pub inside: Option<Arc<Medium>>,
pub outside: Option<Arc<Medium>>,
}
impl MediumInterface {
pub fn new(inside: Option<Arc<Medium>>, outside: Option<Arc<Medium>>) -> Self {
Self { inside, outside }
}
pub fn is_medium_transition(&self) -> bool {
if let Some(ref inside) = self.inside {
// self.inside == Some
if let Some(ref outside) = self.outside {
// self.outside == Some
let pi = inside as *const _ as *const usize;
let po = outside as *const _ as *const usize;
pi != po
} else {
// self.outside == None
true
}
} else {
// self.inside == None
if let Some(ref _outside) = self.outside {
// self.outside == Some
true
} else {
// self.outside == None
false
}
}
}
}

View file

@ -1,8 +1,13 @@
pub mod geometry;
pub mod integrator;
pub mod light;
pub mod interaction;
pub mod material;
pub mod medium;
pub mod pbrt;
pub mod primitive;
pub mod quaternion;
pub mod shape;
pub mod texture;
pub mod transform;
pub mod spectrum;

View file

@ -1,25 +1,56 @@
use num_traits::Num;
pub type Float = f32;
pub const MACHINE_EPSILON: Float = std::f32::EPSILON * 0.5;
pub const SHADOW_EPSILON: Float = 0.0001;
pub const INV_PI: Float = 0.318_309_886_183_790_671_54;
pub const INV_2_PI: Float = 0.159_154_943_091_895_335_77;
pub const INV_4_PI: Float = 0.079_577_471_545_947_667_88;
pub const PI_OVER_2: Float = 1.570_796_326_794_896_619_23;
pub const PI_OVER_4: Float = 0.785_398_163_397_448_309_61;
pub const SQRT_2: Float = 1.414_213_562_373_095_048_80;
#[inline]
pub fn lerp<T>(x: T, a: f64, b: f64) -> f64 {
(T::onw() - x) * a + x * b
pub fn lerp<T>(x: T, a: T, b: T) -> T
where
T: Num + Copy,
{
(T::one() - x) * a + x * b
}
pub fn linear_pdf(x: f64, a: f64, b: f64) -> f64 {
if x < 0.0 || x > 1.0 {
return 0.0;
pub fn linear_pdf<T>(x: T, a: T, b: T) -> T
where
T: Num + Copy + PartialOrd,
{
if x < T::zero() || x > T::one() {
return T::zero();
}
2.0 * lerp(x, a, b) / (a + b)
(T::one() + T::one()) * lerp(x, a, b) / (a + b)
}
pub fn sample_linear(u: f64, a: f64, b: f64) -> f64 {
if u == 0.0 && a == 0.0 {
return 0.0;
pub fn sample_linear<T>(u: T, a: T, b: T) -> T
where
T: Num,
{
if u == T::zero() && a == T::zero() {
return T::zero();
}
u * (a + b)
}
pub fn clamp_t<T>(val: T, low: T, high: T) -> T
where
T: PartialOrd,
{
let r: T;
if val < low {
r = low;
} else if val > high {
r = high;
} else {
r = val;
}
r
}

View file

@ -1,6 +1,6 @@
// use crate::core::medium::MediumInterface;
// use crate::core::light::Light;
use crate::utils::types::Bounds3f;
// use crate::core::geometry::Bounds3f;
//
//
pub struct GeometricPrimitive;
@ -18,17 +18,15 @@ pub enum Primitive {
}
impl Primitive {
pub fn bounds(&self) -> Bounds3f {
match self {
Primitive::Geometric(primitive) => primitive.bounds(),
Primitive::Transformed(primitive) => primitive.bounds(),
Primitive::Animated(primitive) => primitive.bounds(),
Primitive::BVH(primitive) => primitive.bounds(),
Primitive::KdTree(primitive) => primitive.bounds(),
}
}
pub fn
// pub fn bounds(&self) -> Bounds3f {
// match self {
// Primitive::Geometric(primitive) => primitive.bounds(),
// Primitive::Transformed(primitive) => primitive.bounds(),
// Primitive::Animated(primitive) => primitive.bounds(),
// Primitive::BVH(primitive) => primitive.bounds(),
// Primitive::KdTree(primitive) => primitive.bounds(),
// }
// }
}
// struct GeometricPrimitive {

58
src/core/quaternion.rs Normal file
View file

@ -0,0 +1,58 @@
use crate::core::geometry::Vector3f;
use crate::core::pbrt::Float;
use std::ops::{Add, AddAssign, Sub, SubAssign, Mul, MulAssign, Div, DivAssign, Neg};
#[derive(Copy, Clone, PartialEq)]
pub struct Quaternion {
pub v: Vector3f,
pub w: Float,
}
impl Default for Quaternion {
fn default() -> Self {
Self { v: Vector3f::default(), w: 1.0 }
}
}
impl Add for Quaternion {
type Output = Self;
fn add(self, rhs: Quaternion) -> Self {
Self { v: self.v + rhs.v, w: self.w + rhs.w }
}
}
impl AddAssign for Quaternion {
fn add_assign(&mut self, rhs: Self) { self.v += rhs.v; self.w += rhs.w; }
}
impl Sub for Quaternion {
type Output = Self;
fn sub(self, rhs: Self) -> Self { Self { v: self.v - rhs.v, w: self.w - rhs.w }}
}
impl SubAssign for Quaternion {
fn sub_assign(&mut self, rhs: Self) { self.v -= rhs.v; self.w -= rhs.w; }
}
impl Mul<Float> for Quaternion {
type Output = Self;
fn mul(self, rhs: Float) -> Self { Self { v: self.v * rhs, w: self.w * rhs }}
}
impl MulAssign<Float> for Quaternion {
fn mul_assign(&mut self, rhs: Float) { self.v *= rhs; self.w *= rhs; }
}
impl Div<Float> for Quaternion {
type Output = Self;
fn div(self, rhs: Float) -> Self { Self { v: self.v / rhs, w: self.w / rhs }}
}
impl DivAssign<Float> for Quaternion {
fn div_assign(&mut self, rhs: Float) { self.v /= rhs; self.w /= rhs; }
}
impl Neg for Quaternion {
type Output = Self;
fn neg(self) -> Self { Self { v: -self.v, w: -self.w }}
}

8
src/core/spectrum.rs Normal file
View file

@ -0,0 +1,8 @@
use crate::core::pbrt::Float;
#[derive(Debug, Default, Copy, Clone)]
pub struct RGBSpectrum {
pub c: [Float; 3],
}
pub struct Spectrum;

View file

@ -33,24 +33,24 @@ pub enum FloatTexture {
}
impl FloatTexture {
pub fn evaluate(&self, ctx: TextureEvalContext) -> f32 {
match self {
FloatTexture::FloatImage(texture) => texture.evaluate(ctx),
FloatTexture::GPUFloatImage(texture) => texture.evaluate(ctx),
FloatTexture::FloatMix(texture) => texture.evaluate(ctx),
FloatTexture::FloatDirectionMix(texture) => texture.evaluate(ctx),
FloatTexture::FloatScaled(texture) => texture.evaluate(ctx),
FloatTexture::FloatConstant(texture) => texture.evaluate(ctx),
FloatTexture::FloatBilerp(texture) => texture.evaluate(ctx),
FloatTexture::FloatCheckerboard(texture) => texture.evaluate(ctx),
FloatTexture::FloatDots(texture) => texture.evaluate(ctx),
FloatTexture::FBm(texture) => texture.evaluate(ctx),
FloatTexture::FloatPtex(texture) => texture.evaluate(ctx),
FloatTexture::GPUFloatPtex(texture) => texture.evaluate(ctx),
FloatTexture::Windy(texture) => texture.evaluate(ctx),
FloatTexture::Wrinkled(texture) => texture.evaluate(ctx),
}
}
// pub fn evaluate(&self, ctx: TextureEvalContext) -> f32 {
// match self {
// FloatTexture::FloatImage(texture) => texture.evaluate(ctx),
// FloatTexture::GPUFloatImage(texture) => texture.evaluate(ctx),
// FloatTexture::FloatMix(texture) => texture.evaluate(ctx),
// FloatTexture::FloatDirectionMix(texture) => texture.evaluate(ctx),
// FloatTexture::FloatScaled(texture) => texture.evaluate(ctx),
// FloatTexture::FloatConstant(texture) => texture.evaluate(ctx),
// FloatTexture::FloatBilerp(texture) => texture.evaluate(ctx),
// FloatTexture::FloatCheckerboard(texture) => texture.evaluate(ctx),
// FloatTexture::FloatDots(texture) => texture.evaluate(ctx),
// FloatTexture::FBm(texture) => texture.evaluate(ctx),
// FloatTexture::FloatPtex(texture) => texture.evaluate(ctx),
// FloatTexture::GPUFloatPtex(texture) => texture.evaluate(ctx),
// FloatTexture::Windy(texture) => texture.evaluate(ctx),
// FloatTexture::Wrinkled(texture) => texture.evaluate(ctx),
// }
// }
}
pub struct RGBConstantTexture;
@ -86,22 +86,22 @@ pub enum SpectrumTexture {
}
impl SpectrumTexture {
pub fn evaluate(&self, ctx: TextureEvalContext) -> f32 {
match self {
SpectrumTexture::FloatImage(texture) => texture.evaluate(ctx),
SpectrumTexture::GPUFloatImage(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatMix(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatDirectionMix(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatScaled(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatConstant(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatBilerp(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatCheckerboard(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatDots(texture) => texture.evaluate(ctx),
SpectrumTexture::FBm(texture) => texture.evaluate(ctx),
SpectrumTexture::FloatPtex(texture) => texture.evaluate(ctx),
SpectrumTexture::GPUFloatPtex(texture) => texture.evaluate(ctx),
SpectrumTexture::Windy(texture) => texture.evaluate(ctx),
SpectrumTexture::Wrinkled(texture) => texture.evaluate(ctx),
}
}
// pub fn evaluate(&self, ctx: TextureEvalContext) -> f32 {
// match self {
// SpectrumTexture::FloatImage(texture) => texture.evaluate(ctx),
// SpectrumTexture::GPUFloatImage(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatMix(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatDirectionMix(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatScaled(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatConstant(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatBilerp(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatCheckerboard(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatDots(texture) => texture.evaluate(ctx),
// SpectrumTexture::FBm(texture) => texture.evaluate(ctx),
// SpectrumTexture::FloatPtex(texture) => texture.evaluate(ctx),
// SpectrumTexture::GPUFloatPtex(texture) => texture.evaluate(ctx),
// SpectrumTexture::Windy(texture) => texture.evaluate(ctx),
// SpectrumTexture::Wrinkled(texture) => texture.evaluate(ctx),
// }
// }
}

424
src/core/transform.rs Normal file
View file

@ -0,0 +1,424 @@
use num_traits::{Num, One, Zero, Signed, Float as NumFloat};
use std::ops::{Add, Div, Index, IndexMut, Mul};
use std::fmt;
use std::fmt::{Display, Debug};
use crate::core::geometry::{Vector, Point, Vector3f, Point3f};
#[derive(Copy, Clone)]
pub struct SquareMatrix<T, const N: usize> {
m: [[T; N]; N],
}
impl<T, const N: usize> SquareMatrix<T, N>
{
fn new() -> Self where T: Copy + Zero {
Self::zero()
}
fn identity() -> Self where T: Copy + Zero + One {
let mut m = [[T::zero(); N]; N];
for i in 0..N {
m[i][i] = T::one();
}
Self { m }
}
pub fn zero() -> Self where T: Copy + Zero {
SquareMatrix { m: [[T::zero(); N]; N] }
}
pub fn is_identity(&self) -> bool where T: Copy + Zero + One + PartialEq {
for i in 0..N {
for j in 0..N {
if i == j {
if self.m[i][j] != T::one() {
return false;
}
} else if self.m[i][j] != T::zero() {
return false;
}
}
}
true
}
pub fn transpose(&self) -> Self where T: Copy + Zero {
let mut result = SquareMatrix::zero();
for i in 0..N {
for j in 0..N {
result.m[j][i] = self.m[i][j];
}
}
result
}
}
impl<T, const N: usize> SquareMatrix<T, N>
where
T: NumFloat
{
pub fn inverse(&self) -> Option<Self> {
if N == 0 {
return Some(Self::new());
}
let mut mat = self.m;
let mut inv = Self::new();
for i in 0..N {
let mut pivot_row = i;
for j in (i + 1)..N {
if mat[j][i].abs() > mat[pivot_row][i].abs() {
pivot_row = j;
}
}
if pivot_row != i {
mat.swap(i, pivot_row);
inv.m.swap(i, pivot_row);
}
let pivot = mat[i][i];
if pivot.is_zero() {
return None;
}
for j in i..N {
mat[i][j] = mat[i][j] / pivot;
}
for j in 0..N {
inv.m[i][j] = inv.m[i][j] / pivot;
}
for j in 0..N {
if i != j {
let factor = mat[j][i];
for k in i..N {
mat[j][k] = mat[j][k] - factor * mat[i][k];
}
for k in 0..N {
inv.m[j][k] = inv.m[j][k] - factor * inv.m[i][k];
}
}
}
}
Some(inv)
}
pub fn determinant(&self) -> T {
if N == 0 {
return T::one();
}
let mut lum = self.m; // Make a mutable copy of the matrix data
let mut parity = 0; // Number of row swaps
for i in 0..N {
// Pivoting: find the row with the largest element in the current column
let mut max_row = i;
for k in (i + 1)..N {
if lum[k][i].abs() > lum[max_row][i].abs() {
max_row = k;
}
}
// If the pivot is on a different row, swap them
if max_row != i {
lum.swap(i, max_row);
parity += 1;
}
// If the pivot element is zero, the determinant is zero
// (the matrix is singular).
if lum[i][i] == T::zero() {
return T::zero();
}
// Gaussian elimination to form the upper-triangular matrix
for j in (i + 1)..N {
let factor = lum[j][i] / lum[i][i];
for k in i..N {
lum[j][k] = lum[j][k] - factor * lum[i][k];
}
}
}
let mut det = T::one();
for i in 0..N {
det = det * lum[i][i];
}
if parity % 2 != 0 {
det = -det;
}
det
}
}
impl<T, const N: usize> Default for SquareMatrix<T, N>
where
T: Copy + Zero + One,
{
fn default() -> Self {
Self::identity()
}
}
impl<T, const N: usize> PartialEq for SquareMatrix<T, N>
where
T: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.m == other.m
}
}
impl<T: Eq, const N: usize> Eq for SquareMatrix<T, N> {}
impl<T, const N: usize> Index<usize> for SquareMatrix<T, N> {
type Output = [T; N];
fn index(&self, index: usize) -> &Self::Output {
&self.m[index]
}
}
impl<T, const N: usize> PartialOrd for SquareMatrix<T, N>
where
T: PartialOrd,
{
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.m.iter().flatten().partial_cmp(other.m.iter().flatten())
}
}
impl<T, const N: usize> IndexMut<usize> for SquareMatrix<T, N> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.m[index]
}
}
impl<T: Debug, const N: usize> Debug for SquareMatrix<T, N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SquareMatrix")
.field("m", &self.m)
.finish()
}
}
impl<T, const N: usize> Display for SquareMatrix<T, N>
where
T: Display + Copy,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut col_widths = [0; N];
for row in self.m.iter() {
for (j, element) in row.iter().enumerate() {
let width = format!("{}", element).len();
if width > col_widths[j] {
col_widths[j] = width;
}
}
}
for i in 0..N {
write!(f, "[")?;
for j in 0..N {
write!(f, "{: >width$} ", self.m[i][j], width = col_widths[j])?;
}
writeln!(f, "]")?;
}
Ok(())
}
}
impl<T, const N: usize> Add for SquareMatrix<T, N>
where
T: Copy + Add<Output=T> + Zero,
{
type Output = Self;
fn add(mut self, rhs: Self) -> Self::Output {
for i in 0..N {
for j in 0..N {
self.m[i][j] = self.m[i][j] + rhs.m[i][j];
}
}
self
}
}
impl<T, const N: usize> Mul for SquareMatrix<T, N>
where
T: Copy + Num,
{
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
let mut result = SquareMatrix::zero();
for i in 0..N {
for j in 0..N {
let mut sum = T::zero();
for k in 0..N {
sum = sum + self.m[i][k] * rhs.m[k][j];
}
result.m[i][j] = sum;
}
}
result
}
}
impl<T, const N: usize> Div<T> for SquareMatrix<T, N>
where
T: Copy + Div<Output = T>,
{
type Output = Self;
fn div(mut self, rhs: T) -> Self::Output {
for row in self.m.iter_mut() {
for element in row.iter_mut() {
*element = *element / rhs;
}
}
self
}
}
impl<T, const N: usize> Mul<Vector<T, N>> for SquareMatrix<T, N>
where
T: Num + Copy,
{
type Output = Vector<T, N>;
fn mul(self, rhs: Vector<T, N>) -> Self::Output {
let mut result_arr = [T::zero(); N];
for i in 0..N {
for j in 0..N {
result_arr[i] = result_arr[i] + self.m[i][j] * rhs.0[j];
}
}
Vector(result_arr)
}
}
impl<T, const N: usize> Mul<Point<T, N>> for SquareMatrix<T, N>
where
T: Num + Copy,
{
type Output = Point<T, N>;
fn mul(self, rhs: Point<T, N>) -> Self::Output {
let mut result_arr = [T::zero(); N];
for i in 0..N {
for j in 0..N {
result_arr[i] = result_arr[i] + self.m[i][j] * rhs.0[j];
}
}
Point(result_arr)
}
}
#[derive(Copy, Clone)]
pub struct Transform<T: num_traits::Float> {
m: SquareMatrix<T, 4>,
m_inv: SquareMatrix<T, 4>,
}
impl<T: num_traits::Float + Signed> Transform<T> {
pub fn new(m: &SquareMatrix<T, 4>) -> Self {
let inv = match m.inverse() {
Some(inv) => inv ,
None => SquareMatrix::zero(),
};
Self { m: *m, m_inv: inv }
}
pub fn is_identity(&self) -> bool {
self.m.is_identity()
}
pub fn inv(&self) -> Self {
Self { m: self.m_inv, m_inv: self.m}
}
pub fn translate(delta: Vector3f) -> Transform {
Transform {
m: Matrix::new(
1.0, 0.0, 0.0, delta.x, 0.0, 1.0, 0.0, delta.y, 0.0, 0.0, 1.0, delta.z, 0.0, 0.0,
0.0, 1.0,
),
m_inv: Matrix4x4::new(
1.0, 0.0, 0.0, -delta.x(), 0.0, 1.0, 0.0, -delta.y(), 0.0, 0.0, 1.0, -delta.z(), 0.0,
0.0, 0.0, 1.0,
),
}
}
}
impl<T: num_traits::Float> PartialEq for Transform<T> {
fn eq(&self, other: &Self) -> bool {
self.m == other.m && self.m_inv == other.m_inv
}
}
#[cfg(test)]
mod tests {
use super::*;
fn assert_matrix_approx_eq<const N: usize>(a: &SquareMatrix<f64, N>, b: &SquareMatrix<f64, N>) {
const EPSILON: f64 = 1e-9;
for i in 0..N {
for j in 0..N {
assert!(
(a[i][j] - b[i][j]).abs() < EPSILON,
"Matrices differ at ({},{}): {} vs {}\nLeft:\n{}\nRight:\n{}",
i, j, a[i][j], b[i][j], a, b
);
}
}
}
#[test]
fn test_inverse_2x2() {
let m = SquareMatrix { m: [[4.0, 7.0], [2.0, 6.0]] };
let identity = SquareMatrix::identity();
let inv = m.inverse().expect("Matrix should be invertible");
let product = m * inv;
assert_matrix_approx_eq(&product, &identity);
}
#[test]
fn test_inverse_3x3() {
let m = SquareMatrix { m: [[1.0, 2.0, 3.0], [0.0, 1.0, 4.0], [5.0, 6.0, 0.0]] };
let identity = SquareMatrix::identity();
let inv = m.inverse().expect("Matrix should be invertible");
let product = m * inv;
let product_inv = inv * m;
assert_matrix_approx_eq(&product, &identity);
assert_matrix_approx_eq(&product_inv, &identity);
}
#[test]
fn test_singular_inverse() {
let m = SquareMatrix { m: [[1.0, 2.0], [2.0, 4.0]] }; // Determinant is 0
assert!(m.inverse().is_none());
}
#[test]
fn test_multiplication_2x2() {
let a = SquareMatrix { m: [[1.0, 2.0], [3.0, 4.0]] };
let b = SquareMatrix { m: [[2.0, 0.0], [1.0, 2.0]] };
let expected = SquareMatrix { m: [[4.0, 4.0], [10.0, 8.0]] };
let result = a * b;
assert_matrix_approx_eq(&result, &expected);
}
#[test]
fn test_determinant_3x3() {
let m = SquareMatrix { m: [[1.0, 2.0, 3.0], [0.0, 1.0, 4.0], [5.0, 6.0, 0.0]] };
assert_eq!(m.determinant(), 1.0);
}
}

View file

@ -1,2 +1,4 @@
#![allow(unused_imports, dead_code)]
mod core;
mod utils;
mod lights;

16
src/lights/diffuse.rs Normal file
View file

@ -0,0 +1,16 @@
use crate::core::medium::MediumInterface;
use crate::core::pbrt::Float;
use crate::core::spectrum::Spectrum;
pub struct DiffuseAreaLight {
pub l_emit: Spectrum,
// pub shape: Arc<Shape>,
pub two_sided: bool,
pub area: Float,
// inherited from class Light (see light.h)
pub flags: u8,
pub n_samples: i32,
pub medium_interface: MediumInterface,
// light_to_world: Transform,
// world_to_light: Transform,
}

1
src/lights/mod.rs Normal file
View file

@ -0,0 +1 @@
pub mod diffuse;

View file

@ -1 +0,0 @@
pub mod types;

View file

@ -1,245 +0,0 @@
use std::ops::{Sub, Add, Div, Mul, Neg, Index, IndexMut};
use num_traits::{Num, Float, Bounded};
pub trait Tuple<const N: usize, T> : Index<usize, Output = T> + IndexMut<usize> + Copy {
fn get(&self, i: usize) -> T;
fn set(&mut self, i: usize, val: T);
fn has_nan(&self) -> bool where T: Float {
for i in 0..N {
if self.get(i).is_nan() {
return true
}
}
false
}
}
#[derive(Copy, Clone, PartialEq)]
pub struct Vector2<T> { pub x: T, pub y: T }
#[derive(Copy, Clone, PartialEq)]
pub struct Point2<T> { pub x: T, pub y: T }
#[derive(Copy, Clone, PartialEq)]
pub struct Vector3<T> { pub x: T, pub y: T, pub z: T }
#[derive(Copy, Clone, PartialEq)]
pub struct Normal3<T> { pub x: T, pub y: T, pub z: T }
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Point3<T> { pub x: T, pub y: T, pub z : T }
// Using macros to make this more concise
macro_rules! impl_tuple3 {
($Struct:ident, [$($field:ident), +]) => {
impl<T> $Struct<T> {
pub fn new($($field: T), +) -> Self { Self { $($field), + }}
}
impl<T: Num + Copy> $Struct<T> {
pub fn dot(&self, other: Self) -> T {
self.x * other.x + self.y * other.y + self.z * other.z
}
pub fn length_squared(self) -> T {
self.dot(self)
}
}
impl<T: Float> $Struct<T> {
pub fn length(self) -> T {
self.length_squared().sqrt()
}
pub fn normalize(self) -> Self {
self / self.length()
}
}
// Operators
impl<T: Add<Output=T>> Add for $Struct<T> {
type Output = Self;
fn add(self, rhs: Self) -> Self { Self::new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z )}
}
impl<T: Mul<Output=T> + Copy > Mul<T> for $Struct<T> {
type Output = Self;
fn mul(self, rhs: T) -> Self { Self::new(self.x * rhs, self.y * rhs, self.z * rhs )}
}
impl<T: Div<Output=T> + Copy > Div<T> for $Struct<T> {
type Output = Self;
fn div(self, rhs: T) -> Self { Self::new(self.x / rhs, self.y / rhs, self.z / rhs )}
}
impl<T: Neg<Output=T>> Neg for $Struct<T> {
type Output = Self;
fn neg(self) -> Self { Self::new(-self.x, -self.y, -self.z)}
}
impl<T> Index<usize> for $Struct<T> {
type Output = T;
fn index(&self, i: usize) -> &T {
match i { 0 => &self.x, 1 => &self.y, 2 => &self.z, _ => panic!("Index out of bonds") }
}
}
impl<T> IndexMut<usize> for $Struct<T> {
fn index_mut(&mut self, i: usize) -> &mut T {
match i { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, _ => panic!("Index out of bonds") }
}
}
};
}
macro_rules! impl_component_ops {
($Struct:ident) => {
impl<T: Sub<Output=T>> Sub for $Struct<T> {
type Output = Self;
fn sub(self, rhs: Self) -> Self { Self::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z) }
}
}
}
impl_tuple3!(Vector3, [x, y, z]);
impl_tuple3!(Point3, [x, y, z]);
impl_tuple3!(Normal3, [x, y, z]);
impl_component_ops!(Vector3);
impl_component_ops!(Normal3);
// Point3 - Point3 -> Vector3
impl<T: Sub<Output = T>> Sub<Point3<T>> for Point3<T> {
type Output = Vector3<T>;
fn sub(self, rhs: Point3<T>) -> Vector3<T> {
Vector3::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
}
}
// Point3 + Vector3 -> Point3
impl<T: Add<Output = T>> Add<Vector3<T>> for Point3<T> {
type Output = Point3<T>;
fn add(self, rhs: Vector3<T>) -> Point3<T> {
Point3::new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z)
}
}
// Point3 - Vector3 -> Point3
impl<T: Sub<Output = T>> Sub<Vector3<T>> for Point3<T> {
type Output = Point3<T>;
fn sub(self, rhs: Vector3<T>) -> Point3<T> {
Point3::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
}
}
// Cross Product for Vector3
impl<T: Num + Copy> Vector3<T> {
pub fn cross(self, other: Vector3<T>) -> Vector3<T> {
Vector3 {
x: self.y * other.z - self.z * other.y,
y: self.z * other.x - self.x * other.z,
z: self.x * other.y - self.y * other.x,
}
}
}
pub type Point3f = Point3<f32>;
pub type Point3i = Point3<i32>;
pub type Vector3f = Vector3<f32>;
pub type Vector3i = Vector3<i32>;
pub type Normal3f = Normal3<f32>;
pub type Normal3i = Normal3<i32>;
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Bounds3<T> {
pub p_min: Point3<T>,
pub p_max: Point3<T>,
}
impl<T> Bounds3<T>
where
T: Num + Bounded + PartialOrd + Copy,
{
pub fn new() -> Self {
Self {
p_min: Point3::new(T::max_value(), T::max_value(), T::max_value()),
p_max: Point3::new(T::min_value(), T::min_value(), T::min_value()),
}
}
pub fn from_point(p: Point3<T>) -> Self {
Self { p_min: p, p_max: p }
}
pub fn from_points(p1: Point3<T>, p2: Point3<T>) -> Self {
Self {
p_min: Point3::new(
if p1.x < p2.x { p1.x } else { p2.x },
if p1.y < p2.y { p1.y } else { p2.y },
if p1.z < p2.z { p1.z } else { p2.z },
),
p_max: Point3::new(
if p1.x > p2.x { p1.x } else { p2.x },
if p1.y > p2.y { p1.y } else { p2.y },
if p1.z > p2.z { p1.z } else { p2.z },
),
}
}
pub fn diagonal(&self) -> Vector3<T> {
self.p_max - self.p_min
}
pub fn surface_area(&self) -> T {
let d = self.diagonal();
let two = T::one() + T::one();
two * (d.x * d.y + d.x * d.z + d.y * d.z)
}
pub fn volume(&self) -> T {
let d = self.diagonal();
d.x * d.y * d.z
}
pub fn is_empty(&self) -> bool {
self.p_min.x >= self.p_max.x || self.p_min.y >= self.p_max.y || self.p_min.z >= self.p_max.z
}
pub fn max_dimension(&self) -> usize {
let d = self.diagonal();
if d.x > d.y && d.x > d.z {
return 0;
} else if d.y > d.z {
return 1;
}
2
}
}
pub fn union_bounds<T: PartialOrd + Copy>(b1: Bounds3<T>, b2: Bounds3<T>) -> Bounds3<T> {
Bounds3 {
p_min: Point3::new(
if b1.p_min.x < b2.p_min.x { b1.p_min.x } else { b2.p_min.x },
if b1.p_min.y < b2.p_min.y { b1.p_min.y } else { b2.p_min.y },
if b1.p_min.z < b2.p_min.z { b1.p_min.z } else { b2.p_min.z },
),
p_max: Point3::new(
if b1.p_max.x > b2.p_max.x { b1.p_max.x } else { b2.p_max.x },
if b1.p_max.y > b2.p_max.y { b1.p_max.y } else { b2.p_max.y },
if b1.p_max.z > b2.p_max.z { b1.p_max.z } else { b2.p_max.z },
),
}
}
pub fn union_bounds_point<T: PartialOrd + Copy>(b: Bounds3<T>, p: Point3<T>) -> Bounds3<T> {
Bounds3 {
p_min: Point3::new(
if b.p_min.x < p.x { b.p_min.x } else { p.x },
if b.p_min.y < p.y { b.p_min.y } else { p.y },
if b.p_min.z < p.z { b.p_min.z } else { p.z },
),
p_max: Point3::new(
if b.p_max.x > p.x { b.p_max.x } else { p.x },
if b.p_max.y > p.y { b.p_max.y } else { p.y },
if b.p_max.z > p.z { b.p_max.z } else { p.z },
),
}
}