Continuing GPU migration, implemented new parallelization strategies, correcting some logic bugs in maths functions
This commit is contained in:
parent
4dbec9bc2c
commit
75655ed774
142 changed files with 9304 additions and 5534 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
|
@ -1,7 +1,8 @@
|
|||
/target
|
||||
target/
|
||||
*.lock
|
||||
*.log
|
||||
*.bak
|
||||
flip.rs
|
||||
.vscode
|
||||
rust-analyzer.json
|
||||
data/
|
||||
|
|
|
|||
|
|
@ -37,6 +37,9 @@ cust = { git = "https://github.com/Rust-GPU/Rust-CUDA", branch = "main", default
|
|||
ptex = "0.3.0"
|
||||
ptex-sys = "0.3.0"
|
||||
slice = "0.0.4"
|
||||
crossbeam-channel = "0.5.15"
|
||||
num_cpus = "1.17.0"
|
||||
ply-rs = "0.1.3"
|
||||
|
||||
[build-dependencies]
|
||||
spirv-builder = { git = "https://github.com/rust-gpu/rust-gpu", branch = "main", optional = true }
|
||||
|
|
|
|||
|
|
@ -15,6 +15,8 @@ num-traits = "0.2.19"
|
|||
once_cell = "1.21.3"
|
||||
smallvec = "1.15.1"
|
||||
cuda_std = { git = "https://github.com/Rust-GPU/Rust-CUDA", branch = "main", default-features = false, optional = true }
|
||||
half = "2.7.1"
|
||||
rand = "0.9.2"
|
||||
|
||||
[features]
|
||||
use_f64 = []
|
||||
|
|
|
|||
|
|
@ -6,7 +6,6 @@ use crate::core::geometry::{
|
|||
use crate::core::medium::Medium;
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::sampler::CameraSample;
|
||||
use crate::images::ImageMetadata;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::sampling::sample_uniform_disk_concentric;
|
||||
|
|
@ -80,11 +79,6 @@ impl OrthographicCamera {
|
|||
}
|
||||
|
||||
impl CameraTrait for OrthographicCamera {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
fn init_metadata(&self, metadata: &mut ImageMetadata) {
|
||||
self.base.init_metadata(metadata)
|
||||
}
|
||||
|
||||
fn base(&self) -> &CameraBase {
|
||||
&self.base
|
||||
}
|
||||
|
|
|
|||
|
|
@ -10,7 +10,8 @@ use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
|||
use crate::utils::sampling::sample_uniform_disk_concentric;
|
||||
use crate::utils::transform::Transform;
|
||||
|
||||
#[derive(Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy)]
|
||||
pub struct PerspectiveCamera {
|
||||
pub base: CameraBase,
|
||||
pub screen_from_camera: Transform,
|
||||
|
|
@ -78,11 +79,6 @@ impl PerspectiveCamera {
|
|||
}
|
||||
|
||||
impl PerspectiveCamera {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
fn init_metadata(&self, metadata: &mut crate::image::ImageMetadata) {
|
||||
self.base.init_metadata(metadata)
|
||||
}
|
||||
|
||||
fn base(&self) -> &CameraBase {
|
||||
&self.base
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,15 +1,15 @@
|
|||
use crate::PI;
|
||||
use crate::core::camera::{CameraBase, CameraRay, CameraTrait, CameraTransform};
|
||||
use crate::core::color::SRGB;
|
||||
use crate::core::film::Film;
|
||||
use crate::core::geometry::{
|
||||
Bounds2f, Normal3f, Point2f, Point2i, Point3f, Ray, Vector2f, Vector2i, Vector3f, VectorLike,
|
||||
};
|
||||
use crate::core::image::{Image, PixelFormat};
|
||||
use crate::core::medium::Medium;
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::sampler::CameraSample;
|
||||
use crate::core::scattering::refract;
|
||||
use crate::images::{Image, PixelFormat};
|
||||
use crate::spectra::color::SRGB;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::math::{lerp, quadratic, square};
|
||||
|
||||
|
|
@ -385,32 +385,15 @@ impl RealisticCamera {
|
|||
}
|
||||
|
||||
impl CameraTrait for RealisticCamera {
|
||||
fn init_metadata(&self, metadata: &mut crate::image::ImageMetadata) {
|
||||
self.base.init_metadata(metadata)
|
||||
}
|
||||
|
||||
fn base(&self) -> &CameraBase {
|
||||
&self.base
|
||||
}
|
||||
|
||||
fn get_film(&self) -> &Film {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
{
|
||||
if self.base.film.is_null() {
|
||||
panic!(
|
||||
"FilmBase error: PixelSensor pointer is null. This should have been checked during construction."
|
||||
);
|
||||
}
|
||||
}
|
||||
unsafe { &*self.base.film }
|
||||
}
|
||||
|
||||
fn generate_ray(
|
||||
&self,
|
||||
sample: CameraSample,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<CameraRay> {
|
||||
// Find point on film, _pFilm_, corresponding to _sample.pFilm_
|
||||
let film = self.get_film();
|
||||
let s = Point2f::new(
|
||||
sample.p_film.x() / film.full_resolution().x() as Float,
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
use crate::core::camera::{CameraBase, CameraRay, CameraTransform};
|
||||
use crate::core::camera::{CameraBase, CameraRay, CameraTrait, CameraTransform};
|
||||
use crate::core::film::Film;
|
||||
use crate::core::geometry::{Bounds2f, Point2f, Point3f, Ray, Vector3f, spherical_direction};
|
||||
use crate::core::medium::Medium;
|
||||
|
|
@ -6,7 +6,6 @@ use crate::core::pbrt::{Float, PI};
|
|||
use crate::core::sampler::CameraSample;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::math::{equal_area_square_to_sphere, wrap_equal_area_square};
|
||||
use std::sync::Arc;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||
|
|
@ -15,36 +14,18 @@ pub enum Mapping {
|
|||
EqualArea,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct SphericalCamera {
|
||||
pub mapping: Mapping,
|
||||
pub base: CameraBase,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl SphericalCamera {
|
||||
pub fn init_metadata(&self, metadata: &mut crate::image::ImageMetadata) {
|
||||
self.base.init_metadata(metadata)
|
||||
}
|
||||
}
|
||||
|
||||
impl CameraTrait for SphericalCamera {
|
||||
fn base(&self) -> &CameraBase {
|
||||
&self.base
|
||||
}
|
||||
|
||||
fn get_film(&self) -> &Film {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
{
|
||||
if self.base.film.is_null() {
|
||||
panic!(
|
||||
"FilmBase error: PixelSensor pointer is null. This should have been checked during construction."
|
||||
);
|
||||
}
|
||||
}
|
||||
unsafe { &*self.base.film }
|
||||
}
|
||||
|
||||
fn generate_ray(
|
||||
&self,
|
||||
sample: CameraSample,
|
||||
|
|
@ -58,7 +39,6 @@ impl CameraTrait for SphericalCamera {
|
|||
);
|
||||
let dir: Vector3f;
|
||||
if self.mapping == Mapping::EquiRectangular {
|
||||
// Compute ray direction using equirectangular mapping
|
||||
let theta = PI * uv[1];
|
||||
let phi = 2. * PI * uv[0];
|
||||
dir = spherical_direction(theta.sin(), theta.cos(), phi);
|
||||
|
|
@ -67,7 +47,7 @@ impl CameraTrait for SphericalCamera {
|
|||
uv = wrap_equal_area_square(&mut uv);
|
||||
dir = equal_area_square_to_sphere(uv);
|
||||
}
|
||||
std::mem::swap(&mut dir.y(), &mut dir.z());
|
||||
core::mem::swap(&mut dir.y(), &mut dir.z());
|
||||
|
||||
let ray = Ray::new(
|
||||
Point3f::new(0., 0., 0.),
|
||||
|
|
|
|||
|
|
@ -1,11 +1,13 @@
|
|||
use crate::core::bxdf::BSDF;
|
||||
use crate::core::bxdf::{BSDF, NormalizedFresnelBxDF};
|
||||
use crate::core::geometry::{Frame, Normal3f, Point2f, Point3f, Point3fi, Vector3f};
|
||||
use crate::core::interaction::{InteractionData, Shadinggeom, SurfaceInteraction};
|
||||
use crate::core::interaction::{InteractionBase, ShadingGeom, SurfaceInteraction};
|
||||
use crate::core::pbrt::{Float, PI};
|
||||
use crate::shapes::Shape;
|
||||
use crate::core::shape::Shape;
|
||||
use crate::spectra::{N_SPECTRUM_SAMPLES, SampledSpectrum};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::math::{catmull_rom_weights, square};
|
||||
use crate::utils::sampling::sample_catmull_rom_2d;
|
||||
use crate::utils::{Ptr, Slice};
|
||||
use enum_dispatch::enum_dispatch;
|
||||
use std::sync::Arc;
|
||||
|
||||
|
|
@ -63,20 +65,12 @@ impl From<SurfaceInteraction> for SubsurfaceInteraction {
|
|||
impl From<&SubsurfaceInteraction> for SurfaceInteraction {
|
||||
fn from(ssi: &SubsurfaceInteraction) -> SurfaceInteraction {
|
||||
SurfaceInteraction {
|
||||
common: InteractionData {
|
||||
pi: ssi.pi,
|
||||
n: ssi.n,
|
||||
wo: Vector3f::zero(),
|
||||
time: 0.,
|
||||
medium_interface: None,
|
||||
medium: None,
|
||||
},
|
||||
uv: Point2f::zero(),
|
||||
common: InteractionBase::new_minimal(ssi.pi, ssi.n),
|
||||
dpdu: ssi.dpdu,
|
||||
dpdv: ssi.dpdv,
|
||||
dndu: Normal3f::zero(),
|
||||
dndv: Normal3f::zero(),
|
||||
shading: Shadinggeom {
|
||||
shading: ShadingGeom {
|
||||
n: ssi.ns,
|
||||
dpdu: ssi.dpdus,
|
||||
dpdv: ssi.dpdvs,
|
||||
|
|
@ -84,44 +78,30 @@ impl From<&SubsurfaceInteraction> for SurfaceInteraction {
|
|||
dndv: Normal3f::zero(),
|
||||
},
|
||||
face_index: 0,
|
||||
area_light: None,
|
||||
material: None,
|
||||
area_light: Ptr::null(),
|
||||
material: Ptr::null(),
|
||||
dpdx: Vector3f::zero(),
|
||||
dpdy: Vector3f::zero(),
|
||||
dudx: 0.,
|
||||
dvdx: 0.,
|
||||
dudy: 0.,
|
||||
dvdy: 0.,
|
||||
shape: Shape::default().into(),
|
||||
shape: Ptr::from(&Shape::default()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct BSSRDFTable {
|
||||
rho_samples: Vec<Float>,
|
||||
radius_samples: Vec<Float>,
|
||||
profile: Vec<Float>,
|
||||
rho_eff: Vec<Float>,
|
||||
profile_cdf: Vec<Float>,
|
||||
pub rho_samples: Slice<Float>,
|
||||
pub radius_samples: *const Float,
|
||||
pub profile: *const Float,
|
||||
pub rho_eff: *const Float,
|
||||
pub profile_cdf: *const Float,
|
||||
}
|
||||
|
||||
impl BSSRDFTable {
|
||||
pub fn new(n_rho_samples: usize, n_radius_samples: usize) -> Self {
|
||||
let rho_samples: Vec<Float> = Vec::with_capacity(n_rho_samples);
|
||||
let radius_samples: Vec<Float> = Vec::with_capacity(n_radius_samples);
|
||||
let profile: Vec<Float> = Vec::with_capacity(n_radius_samples * n_rho_samples);
|
||||
let rho_eff: Vec<Float> = Vec::with_capacity(n_rho_samples);
|
||||
let profile_cdf: Vec<Float> = Vec::with_capacity(n_radius_samples * n_rho_samples);
|
||||
Self {
|
||||
rho_samples,
|
||||
radius_samples,
|
||||
profile,
|
||||
rho_eff,
|
||||
profile_cdf,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn eval_profile(&self, rho_index: usize, radius_index: usize) -> Float {
|
||||
assert!(rho_index < self.rho_samples.len());
|
||||
assert!(radius_index < self.radius_samples.len());
|
||||
|
|
@ -129,33 +109,40 @@ impl BSSRDFTable {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Default, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, Default, Debug)]
|
||||
pub struct BSSRDFProbeSegment {
|
||||
pub p0: Point3f,
|
||||
pub p1: Point3f,
|
||||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait BSSRDFTrait: Send + Sync + std::fmt::Debug {
|
||||
pub trait BSSRDFTrait {
|
||||
fn sample_sp(&self, u1: Float, u2: Point2f) -> Option<BSSRDFProbeSegment>;
|
||||
fn probe_intersection_to_sample(&self, si: &SubsurfaceInteraction) -> BSSRDFSample;
|
||||
fn probe_intersection_to_sample(
|
||||
&self,
|
||||
si: &SubsurfaceInteraction,
|
||||
bxdf: NormalizedFresnelBxDF,
|
||||
) -> BSSRDFSample;
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[enum_dispatch(BSSRDFTrait)]
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub enum BSSRDF {
|
||||
Tabulated(TabulatedBSSRDF),
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct TabulatedBSSRDF {
|
||||
po: Point3f,
|
||||
wo: Vector3f,
|
||||
ns: Normal3f,
|
||||
eta: Float,
|
||||
sigma_t: SampledSpectrum,
|
||||
rho: SampledSpectrum,
|
||||
table: Arc<BSSRDFTable>,
|
||||
sigma_t: RelPtr<SampledSpectrum>,
|
||||
rho: RelPtr<SampledSpectrum>,
|
||||
table: *const BSSRDFTable,
|
||||
}
|
||||
|
||||
impl TabulatedBSSRDF {
|
||||
|
|
@ -166,7 +153,7 @@ impl TabulatedBSSRDF {
|
|||
eta: Float,
|
||||
sigma_a: &SampledSpectrum,
|
||||
sigma_s: &SampledSpectrum,
|
||||
table: Arc<BSSRDFTable>,
|
||||
table: *const BSSRDFTable,
|
||||
) -> Self {
|
||||
let sigma_t = *sigma_a + *sigma_s;
|
||||
let rho = SampledSpectrum::safe_div(sigma_s, &sigma_t);
|
||||
|
|
@ -321,7 +308,11 @@ impl BSSRDFTrait for TabulatedBSSRDF {
|
|||
})
|
||||
}
|
||||
|
||||
fn probe_intersection_to_sample(&self, _si: &SubsurfaceInteraction) -> BSSRDFSample {
|
||||
fn probe_intersection_to_sample(
|
||||
&self,
|
||||
_si: &SubsurfaceInteraction,
|
||||
_bxdf: NormalizedFresnelBxDF,
|
||||
) -> BSSRDFSample {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@ use std::sync::{Arc, RwLock};
|
|||
|
||||
use enum_dispatch::enum_dispatch;
|
||||
|
||||
use crate::core::color::RGB;
|
||||
use crate::core::geometry::{
|
||||
Frame, Normal3f, Point2f, Vector3f, VectorLike, abs_cos_theta, cos_theta, same_hemisphere,
|
||||
spherical_direction, spherical_theta,
|
||||
|
|
@ -18,9 +19,9 @@ use crate::core::scattering::{
|
|||
refract,
|
||||
};
|
||||
use crate::spectra::{
|
||||
N_SPECTRUM_SAMPLES, RGB, RGBColorSpace, RGBUnboundedSpectrum, SampledSpectrum,
|
||||
SampledWavelengths,
|
||||
N_SPECTRUM_SAMPLES, RGBColorSpace, RGBUnboundedSpectrum, SampledSpectrum, SampledWavelengths,
|
||||
};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::hash::hash_buffer;
|
||||
use crate::utils::math::{
|
||||
clamp, fast_exp, i0, lerp, log_i0, radians, safe_acos, safe_asin, safe_sqrt, sample_discrete,
|
||||
|
|
@ -170,7 +171,8 @@ impl BSDFSample {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct DiffuseBxDF {
|
||||
pub r: SampledSpectrum,
|
||||
}
|
||||
|
|
@ -181,10 +183,12 @@ impl DiffuseBxDF {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct DiffuseTransmissionBxDF;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct DielectricBxDF {
|
||||
pub eta: Float,
|
||||
pub mf_distrib: TrowbridgeReitzDistribution,
|
||||
|
|
@ -196,7 +200,8 @@ impl DielectricBxDF {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct ThinDielectricBxDF {
|
||||
pub eta: Float,
|
||||
}
|
||||
|
|
@ -208,17 +213,18 @@ impl ThinDielectricBxDF {
|
|||
}
|
||||
|
||||
static P_MAX: usize = 3;
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct HairBxDF {
|
||||
h: Float,
|
||||
eta: Float,
|
||||
sigma_a: SampledSpectrum,
|
||||
beta_m: Float,
|
||||
beta_n: Float,
|
||||
v: [Float; P_MAX + 1],
|
||||
s: Float,
|
||||
sin_2k_alpha: [Float; P_MAX],
|
||||
cos_2k_alpha: [Float; P_MAX],
|
||||
pub h: Float,
|
||||
pub eta: Float,
|
||||
pub sigma_a: SampledSpectrum,
|
||||
pub beta_m: Float,
|
||||
pub beta_n: Float,
|
||||
pub v: [Float; P_MAX + 1],
|
||||
pub s: Float,
|
||||
pub sin_2k_alpha: [Float; P_MAX],
|
||||
pub cos_2k_alpha: [Float; P_MAX],
|
||||
}
|
||||
|
||||
impl HairBxDF {
|
||||
|
|
@ -320,7 +326,7 @@ impl HairBxDF {
|
|||
std::array::from_fn(|i| ap[i].average() / sum_y)
|
||||
}
|
||||
|
||||
fn sigma_a_from_concentration(ce: Float, cp: Float) -> RGBUnboundedSpectrum {
|
||||
pub fn sigma_a_from_concentration(ce: Float, cp: Float) -> RGBUnboundedSpectrum {
|
||||
let eumelanin_sigma_a = RGB::new(0.419, 0.697, 1.37);
|
||||
let pheomelanin_sigma_a = RGB::new(0.187, 0.4, 1.05);
|
||||
let sigma_a = ce * eumelanin_sigma_a + cp * pheomelanin_sigma_a;
|
||||
|
|
@ -328,23 +334,28 @@ impl HairBxDF {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct MeasuredBxDFData {
|
||||
wavelengths: Vec<Float>,
|
||||
spectra: PiecewiseLinear2D<3>,
|
||||
ndf: PiecewiseLinear2D<0>,
|
||||
vndf: PiecewiseLinear2D<2>,
|
||||
sigma: PiecewiseLinear2D<0>,
|
||||
isotropic: bool,
|
||||
luminance: PiecewiseLinear2D<2>,
|
||||
pub wavelengths: *const Float,
|
||||
pub spectra: PiecewiseLinear2D<3>,
|
||||
pub ndf: PiecewiseLinear2D<0>,
|
||||
pub vndf: PiecewiseLinear2D<2>,
|
||||
pub sigma: PiecewiseLinear2D<0>,
|
||||
pub isotropic: bool,
|
||||
pub luminance: PiecewiseLinear2D<2>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct MeasuredBxDF {
|
||||
brdf: MeasuredBxDFData,
|
||||
lambda: SampledWavelengths,
|
||||
pub brdf: MeasuredBxDFData,
|
||||
pub lambda: SampledWavelengths,
|
||||
}
|
||||
|
||||
unsafe impl Send for MeasuredBxDF {}
|
||||
unsafe impl Sync for MeasuredBxDF {}
|
||||
|
||||
impl MeasuredBxDF {
|
||||
pub fn new(brdf: MeasuredBxDFData, lambda: &SampledWavelengths) -> Self {
|
||||
Self {
|
||||
|
|
@ -367,13 +378,17 @@ impl MeasuredBxDF {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ConductorBxDF {
|
||||
mf_distrib: TrowbridgeReitzDistribution,
|
||||
eta: SampledSpectrum,
|
||||
k: SampledSpectrum,
|
||||
pub mf_distrib: TrowbridgeReitzDistribution,
|
||||
pub eta: SampledSpectrum,
|
||||
pub k: SampledSpectrum,
|
||||
}
|
||||
|
||||
unsafe impl Send for ConductorBxDF {}
|
||||
unsafe impl Sync for ConductorBxDF {}
|
||||
|
||||
impl ConductorBxDF {
|
||||
pub fn new(
|
||||
mf_distrib: &TrowbridgeReitzDistribution,
|
||||
|
|
@ -388,8 +403,11 @@ impl ConductorBxDF {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct NormalizedFresnelBxDF;
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedFresnelBxDF {
|
||||
pub eta: Float,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct FArgs {
|
||||
|
|
@ -407,7 +425,7 @@ impl Default for FArgs {
|
|||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait BxDFTrait: Any + Send + Sync + std::fmt::Debug {
|
||||
pub trait BxDFTrait: Any {
|
||||
fn flags(&self) -> BxDFFlags;
|
||||
|
||||
fn f(&self, wo: Vector3f, wi: Vector3f, mode: TransportMode) -> SampledSpectrum;
|
||||
|
|
@ -488,12 +506,13 @@ pub enum BxDF {
|
|||
Hair(HairBxDF),
|
||||
CoatedDiffuse(CoatedDiffuseBxDF),
|
||||
CoatedConductor(CoatedConductorBxDF),
|
||||
// DiffuseTransmission(DiffuseTransmissionBxDF),
|
||||
NormalizedFresnel(NormalizedFresnelBxDF),
|
||||
}
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Debug, Default)]
|
||||
pub struct BSDF {
|
||||
bxdf: Option<BxDF>,
|
||||
bxdf: RelPtr<BxDF>,
|
||||
shading_frame: Frame,
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,6 @@ use crate::core::medium::Medium;
|
|||
use crate::core::options::RenderingCoordinateSystem;
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::sampler::CameraSample;
|
||||
use crate::images::ImageMetadata;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::math::lerp;
|
||||
use crate::utils::transform::{AnimatedTransform, Transform};
|
||||
|
|
@ -117,16 +116,6 @@ pub struct CameraBase {
|
|||
pub min_dir_differential_y: Vector3f,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl CameraBase {
|
||||
pub fn init_metadata(&self, metadata: &mut ImageMetadata) {
|
||||
let camera_from_world: Transform =
|
||||
self.camera_transform.camera_from_world(self.shutter_open);
|
||||
|
||||
metadata.camera_from_world = Some(camera_from_world.get_matrix());
|
||||
}
|
||||
}
|
||||
|
||||
#[enum_dispatch(CameraTrait)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
|
|
@ -139,19 +128,19 @@ pub enum Camera {
|
|||
|
||||
#[enum_dispatch]
|
||||
pub trait CameraTrait {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
fn init_metadata(&self, metadata: &mut ImageMetadata);
|
||||
|
||||
fn base(&self) -> &CameraBase;
|
||||
|
||||
fn generate_ray(&self, sample: CameraSample, lambda: &SampledWavelengths) -> Option<CameraRay>;
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
fn get_film(&self) -> Result<&Film, String> {
|
||||
if self.film.is_null() {
|
||||
return Err("Camera error: Film pointer is null.".to_string());
|
||||
fn get_film(&self) -> &Film {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
{
|
||||
if self.base().film.is_null() {
|
||||
panic!(
|
||||
"FilmBase error: PixelSensor pointer is null. This should have been checked during construction."
|
||||
);
|
||||
}
|
||||
}
|
||||
Ok(unsafe { &*self.film })
|
||||
unsafe { &*self.base().film }
|
||||
}
|
||||
|
||||
fn sample_time(&self, u: Float) -> Float {
|
||||
|
|
|
|||
|
|
@ -282,6 +282,18 @@ impl RGB {
|
|||
self.r.max(self.g).max(self.b)
|
||||
}
|
||||
|
||||
pub fn min_component_value(&self) -> Float {
|
||||
self.r.min(self.g).min(self.b)
|
||||
}
|
||||
|
||||
pub fn min_component_index(&self) -> usize {
|
||||
if self.r < self.g {
|
||||
if self.r < self.b { 0 } else { 2 }
|
||||
} else {
|
||||
if self.g < self.b { 1 } else { 2 }
|
||||
}
|
||||
}
|
||||
|
||||
pub fn max_component_index(&self) -> usize {
|
||||
if self.r > self.g {
|
||||
if self.r > self.b { 0 } else { 2 }
|
||||
|
|
@ -290,8 +302,16 @@ impl RGB {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn clamp_zero(rgb: Self) -> Self {
|
||||
RGB::new(rgb.r.max(0.), rgb.b.max(0.), rgb.g.max(0.))
|
||||
pub fn clamp(&self, min: Float, max: Float) -> Self {
|
||||
RGB::new(
|
||||
clamp(self.r, min, max),
|
||||
clamp(self.g, min, max),
|
||||
clamp(self.b, min, max),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn clamp_zero(&self) -> Self {
|
||||
RGB::new(self.r.max(0.), self.b.max(0.), self.g.max(0.))
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -549,10 +569,23 @@ impl RGBSigmoidPolynomial {
|
|||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait ColorEncodingTrait: 'static + Send + Sync + fmt::Debug + fmt::Display {
|
||||
fn from_linear_slice(&self, vin: &[Float], vout: &mut [u8]);
|
||||
fn to_linear_slice(&self, vin: &[u8], vout: &mut [Float]);
|
||||
pub trait ColorEncodingTrait: 'static + Send + Sync {
|
||||
fn from_linear(&self, vin: &[Float], vout: &mut [u8]);
|
||||
fn to_linear(&self, vin: &[u8], vout: &mut [Float]);
|
||||
fn to_float_linear(&self, v: Float) -> Float;
|
||||
|
||||
fn from_linear_scalar(&self, v: Float) -> u8 {
|
||||
let mut out = [0u8; 1];
|
||||
self.from_linear(&[v], &mut out);
|
||||
out[0]
|
||||
}
|
||||
|
||||
fn to_linear_scalar(&self, v: u8) -> Float {
|
||||
let mut out = [0.0; 1];
|
||||
self.to_linear(&[v], &mut out);
|
||||
out[0]
|
||||
}
|
||||
|
||||
fn type_id(&self) -> TypeId {
|
||||
TypeId::of::<Self>()
|
||||
}
|
||||
|
|
@ -576,19 +609,29 @@ impl fmt::Display for ColorEncoding {
|
|||
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
|
||||
pub struct LinearEncoding;
|
||||
impl ColorEncodingTrait for LinearEncoding {
|
||||
fn from_linear_slice(&self, vin: &[Float], vout: &mut [u8]) {
|
||||
fn from_linear(&self, vin: &[Float], vout: &mut [u8]) {
|
||||
for (i, &v) in vin.iter().enumerate() {
|
||||
vout[i] = (v.clamp(0.0, 1.0) * 255.0 + 0.5) as u8;
|
||||
}
|
||||
}
|
||||
fn to_linear_slice(&self, vin: &[u8], vout: &mut [Float]) {
|
||||
|
||||
fn to_linear(&self, vin: &[u8], vout: &mut [Float]) {
|
||||
for (i, &v) in vin.iter().enumerate() {
|
||||
vout[i] = v as Float / 255.0;
|
||||
}
|
||||
}
|
||||
|
||||
fn to_float_linear(&self, v: Float) -> Float {
|
||||
v
|
||||
}
|
||||
|
||||
fn from_linear_scalar(&self, v: Float) -> u8 {
|
||||
(v.clamp(0.0, 1.0) * 255.0 + 0.5) as u8
|
||||
}
|
||||
|
||||
fn to_linear_scalar(&self, v: u8) -> Float {
|
||||
v as Float / 255.0
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for LinearEncoding {
|
||||
|
|
@ -601,7 +644,7 @@ impl fmt::Display for LinearEncoding {
|
|||
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
|
||||
pub struct SRGBEncoding;
|
||||
impl ColorEncodingTrait for SRGBEncoding {
|
||||
fn from_linear_slice(&self, vin: &[Float], vout: &mut [u8]) {
|
||||
fn from_linear(&self, vin: &[Float], vout: &mut [u8]) {
|
||||
for (i, &v_linear) in vin.iter().enumerate() {
|
||||
let v = v_linear.clamp(0.0, 1.0);
|
||||
let v_encoded = if v <= 0.0031308 {
|
||||
|
|
@ -613,12 +656,33 @@ impl ColorEncodingTrait for SRGBEncoding {
|
|||
}
|
||||
}
|
||||
|
||||
fn to_linear_slice(&self, vin: &[u8], vout: &mut [Float]) {
|
||||
fn to_linear(&self, vin: &[u8], vout: &mut [Float]) {
|
||||
for (i, &v) in vin.iter().enumerate() {
|
||||
vout[i] = SRGB_TO_LINEAR_LUT[v as usize];
|
||||
}
|
||||
}
|
||||
|
||||
fn from_linear_scalar(&self, v: Float) -> u8 {
|
||||
let v_clamped = v.clamp(0.0, 1.0);
|
||||
let v_encoded = if v_clamped <= 0.0031308 {
|
||||
v_clamped * 12.92
|
||||
} else {
|
||||
1.055 * v_clamped.powf(1.0 / 2.4) - 0.055
|
||||
};
|
||||
(v_encoded * 255.0 + 0.5) as u8
|
||||
}
|
||||
|
||||
fn to_linear_scalar(&self, v: u8) -> Float {
|
||||
// Normalize 0-255 to 0.0-1.0 first
|
||||
let v_float = v as Float / 255.0;
|
||||
// Apply sRGB -> Linear math
|
||||
if v_float <= 0.04045 {
|
||||
v_float / 12.92
|
||||
} else {
|
||||
((v_float + 0.055) / 1.055).powf(2.4)
|
||||
}
|
||||
}
|
||||
|
||||
fn to_float_linear(&self, v: Float) -> Float {
|
||||
let v = v.clamp(0.0, 1.0);
|
||||
if v <= 0.04045 {
|
||||
|
|
@ -1015,3 +1079,28 @@ impl RGBToSpectrumTable {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
const LMS_FROM_XYZ: SquareMatrix3f = SquareMatrix::new([
|
||||
[0.8951, 0.2664, -0.1614],
|
||||
[-0.7502, 1.7135, 0.0367],
|
||||
[0.0389, -0.0685, 1.0296],
|
||||
]);
|
||||
|
||||
const XYZ_FROM_LMS: SquareMatrix3f = SquareMatrix::new([
|
||||
[0.986993, -0.147054, 0.159963],
|
||||
[0.432305, 0.51836, 0.0492912],
|
||||
[-0.00852866, 0.0400428, 0.968487],
|
||||
]);
|
||||
|
||||
pub fn white_balance(src_white: Point2f, target_white: Point2f) -> SquareMatrix3f {
|
||||
let src_xyz = XYZ::from_xyy(src_white, None);
|
||||
let dst_xyz = XYZ::from_xyy(target_white, None);
|
||||
let src_lms = LMS_FROM_XYZ * src_xyz;
|
||||
let dst_lms = LMS_FROM_XYZ * dst_xyz;
|
||||
let lms_correct = SquareMatrix3f::diag(&[
|
||||
dst_lms[0] / src_lms[0],
|
||||
dst_lms[1] / src_lms[1],
|
||||
dst_lms[2] / src_lms[2],
|
||||
]);
|
||||
XYZ_FROM_LMS * lms_correct * LMS_FROM_XYZ
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,14 +5,13 @@ use crate::core::geometry::{
|
|||
Bounds2f, Bounds2fi, Bounds2i, Normal3f, Point2f, Point2i, Point3f, Tuple, Vector2f, Vector2fi,
|
||||
Vector2i, Vector3f,
|
||||
};
|
||||
use crate::core::image::{Image, PixelFormat};
|
||||
use crate::core::interaction::SurfaceInteraction;
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait, StandardSpectra};
|
||||
use crate::images::{Image, ImageChannelDesc, ImageChannelValues, ImageMetadata, PixelFormat};
|
||||
use crate::spectra::{
|
||||
ConstantSpectrum, DenselySampledSpectrum, LAMBDA_MAX, LAMBDA_MIN, N_SPECTRUM_SAMPLES,
|
||||
PiecewiseLinearSpectrum, RGBColorSpace, SampledSpectrum, SampledWavelengths, colorspace,
|
||||
get_named_spectrum,
|
||||
};
|
||||
use crate::utils::AtomicFloat;
|
||||
use crate::utils::containers::Array2D;
|
||||
|
|
@ -33,7 +32,7 @@ pub struct RGBFilm {
|
|||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RGBPixel {
|
||||
rgb_sum: [AtomicFloat; 3],
|
||||
weight_sum: AtomicFloat,
|
||||
|
|
@ -154,7 +153,7 @@ impl RGBFilm {
|
|||
}
|
||||
|
||||
pub fn get_pixel_rgb(&self, p: Point2i, splat_scale: Option<Float>) -> RGB {
|
||||
let pixel = unsafe { &self.pixels.get(p.x(), p.y())[p] };
|
||||
let pixel = unsafe { &self.pixels.get(p) };
|
||||
let mut rgb = RGB::new(
|
||||
pixel.rgb_sum[0].load() as Float,
|
||||
pixel.rgb_sum[1].load() as Float,
|
||||
|
|
@ -190,7 +189,9 @@ impl RGBFilm {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default)]
|
||||
#[cfg_attr(target_os = "cuda", derive(Copy, Clone))]
|
||||
struct GBufferPixel {
|
||||
pub rgb_sum: [AtomicFloat; 3],
|
||||
pub weight_sum: AtomicFloat,
|
||||
|
|
@ -206,7 +207,9 @@ struct GBufferPixel {
|
|||
pub rgb_variance: VarianceEstimator,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default)]
|
||||
#[cfg_attr(target_os = "cuda", derive(Copy, Clone))]
|
||||
pub struct GBufferFilm {
|
||||
pub base: FilmBase,
|
||||
output_from_render: AnimatedTransform,
|
||||
|
|
@ -312,7 +315,7 @@ impl GBufferFilm {
|
|||
}
|
||||
|
||||
pub fn get_pixel_rgb(&self, p: Point2i, splat_scale: Option<Float>) -> RGB {
|
||||
let pixel = unsafe { &self.pixels.get(p.x(), p.y()) };
|
||||
let pixel = unsafe { &self.pixels.get(p) };
|
||||
let mut rgb = RGB::new(
|
||||
pixel.rgb_sum[0].load() as Float,
|
||||
pixel.rgb_sum[1].load() as Float,
|
||||
|
|
@ -343,7 +346,8 @@ impl GBufferFilm {
|
|||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default, Copy, Clone)]
|
||||
#[derive(Debug, Default)]
|
||||
#[cfg_attr(target_os = "cuda", derive(Copy, Clone))]
|
||||
pub struct SpectralPixel {
|
||||
pub rgb_sum: [AtomicFloat; 3],
|
||||
pub rgb_weigh_sum: AtomicFloat,
|
||||
|
|
@ -351,15 +355,9 @@ pub struct SpectralPixel {
|
|||
pub bucket_offset: usize,
|
||||
}
|
||||
|
||||
pub struct SpectralPixelView<'a> {
|
||||
pub metadata: &'a SpectralPixel,
|
||||
pub bucket_sums: &'a [f64],
|
||||
pub weight_sums: &'a [f64],
|
||||
pub bucket_splats: &'a [AtomicFloat],
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[derive(Debug, Default)]
|
||||
#[cfg_attr(target_os = "cuda", derive(Copy, Clone))]
|
||||
pub struct SpectralFilm {
|
||||
pub base: FilmBase,
|
||||
pub colorspace: RGBColorSpace,
|
||||
|
|
@ -371,59 +369,9 @@ pub struct SpectralFilm {
|
|||
pub filter_integral: Float,
|
||||
pub pixels: Array2D<SpectralPixel>,
|
||||
pub output_rgbf_from_sensor_rgb: SquareMatrix<Float, 3>,
|
||||
pub bucket_sums: Vec<f64>,
|
||||
pub weight_sums: Vec<f64>,
|
||||
pub bucket_splats: Vec<AtomicFloat>,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl SpectralFilm {
|
||||
pub fn new(
|
||||
base: &FilmBase,
|
||||
lambda_min: Float,
|
||||
lambda_max: Float,
|
||||
n_buckets: usize,
|
||||
colorspace: &RGBColorSpace,
|
||||
max_component_value: Float,
|
||||
write_fp16: bool,
|
||||
) -> Self {
|
||||
assert!(!base.pixel_bounds.is_empty());
|
||||
let sensor_ptr = base.sensor;
|
||||
if sensor_ptr.is_null() {
|
||||
panic!("Film must have a sensor");
|
||||
}
|
||||
let sensor = unsafe { &*sensor_ptr };
|
||||
let output_rgbf_from_sensor_rgb = colorspace.rgb_from_xyz * sensor.xyz_from_sensor_rgb;
|
||||
let n_pixels = base.pixel_bounds.area() as usize;
|
||||
let total_bucket_count = n_pixels * n_buckets;
|
||||
let bucket_sums = vec![0.0; total_bucket_count];
|
||||
let weight_sums = vec![0.0; total_bucket_count];
|
||||
let filter_integral = base.filter.integral();
|
||||
let bucket_splats: Vec<AtomicFloat> = (0..total_bucket_count)
|
||||
.map(|_| AtomicFloat::new(0.0))
|
||||
.collect();
|
||||
|
||||
let mut pixels = Array2D::<SpectralPixel>::new(base.pixel_bounds);
|
||||
for i in 0..n_pixels {
|
||||
pixels.get_linear_mut(i).bucket_offset = i * n_buckets;
|
||||
}
|
||||
|
||||
Self {
|
||||
base: base.clone(),
|
||||
lambda_min,
|
||||
lambda_max,
|
||||
n_buckets,
|
||||
pixels,
|
||||
bucket_sums,
|
||||
weight_sums,
|
||||
bucket_splats,
|
||||
colorspace: colorspace.clone(),
|
||||
max_component_value,
|
||||
write_fp16,
|
||||
filter_integral,
|
||||
output_rgbf_from_sensor_rgb,
|
||||
}
|
||||
}
|
||||
pub bucket_sums: *mut f64,
|
||||
pub weight_sums: *mut f64,
|
||||
pub bucket_splats: *mut AtomicFloat,
|
||||
}
|
||||
|
||||
impl SpectralFilm {
|
||||
|
|
@ -438,19 +386,6 @@ impl SpectralFilm {
|
|||
fn uses_visible_surface(&self) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
pub fn get_pixel_view(&self, p: Point2i) -> SpectralPixelView {
|
||||
let metadata = unsafe { &self.pixels.get(p.x(), p.y()) };
|
||||
let start = metadata.bucket_offset;
|
||||
let end = start + self.n_buckets;
|
||||
|
||||
SpectralPixelView {
|
||||
metadata,
|
||||
bucket_sums: &self.bucket_sums[start..end],
|
||||
weight_sums: &self.weight_sums[start..end],
|
||||
bucket_splats: &self.bucket_splats[start..end],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
|
|
@ -471,10 +406,11 @@ impl PixelSensor {
|
|||
g: Spectrum,
|
||||
b: Spectrum,
|
||||
output_colorspace: RGBColorSpace,
|
||||
sensor_illum: Option<std::sync::Arc<Spectrum>>,
|
||||
sensor_illum: *const Spectrum,
|
||||
imaging_ratio: Float,
|
||||
spectra: *const StandardSpectra,
|
||||
swatches: &[Spectrum; 24],
|
||||
) -> Result<Self, Box<dyn Error>> {
|
||||
) -> Self {
|
||||
// As seen in usages of this constructos, sensor_illum can be null
|
||||
// Going with the colorspace's own illuminant, but this might not be the right choice
|
||||
// TODO: Test this
|
||||
|
|
@ -505,15 +441,15 @@ impl PixelSensor {
|
|||
|
||||
let mut xyz_output = [[0.; 3]; Self::N_SWATCH_REFLECTANCES];
|
||||
let sensor_white_g = illum.inner_product(&Spectrum::DenselySampled(g_bar.clone()));
|
||||
let sensor_white_y = illum.inner_product(cie_y());
|
||||
let sensor_white_y = illum.inner_product(spectra.y);
|
||||
for i in 0..Self::N_SWATCH_REFLECTANCES {
|
||||
let s = swatches[i].clone();
|
||||
let xyz = Self::project_reflectance::<XYZ>(
|
||||
&s,
|
||||
&output_colorspace.illuminant,
|
||||
cie_x(),
|
||||
cie_y(),
|
||||
cie_z(),
|
||||
spectra.x,
|
||||
spectra.y,
|
||||
spectra.z,
|
||||
) * (sensor_white_y / sensor_white_g);
|
||||
for c in 0..3 {
|
||||
xyz_output[i][c] = xyz[c];
|
||||
|
|
@ -535,14 +471,15 @@ impl PixelSensor {
|
|||
output_colorspace: &RGBColorSpace,
|
||||
sensor_illum: Option<std::sync::Arc<Spectrum>>,
|
||||
imaging_ratio: Float,
|
||||
spectra: *const StandardSpectra,
|
||||
) -> Self {
|
||||
let r_bar = DenselySampledSpectrum::from_spectrum(cie_x());
|
||||
let g_bar = DenselySampledSpectrum::from_spectrum(cie_y());
|
||||
let b_bar = DenselySampledSpectrum::from_spectrum(cie_z());
|
||||
let r_bar = DenselySampledSpectrum::from_spectrum(spectra.x);
|
||||
let g_bar = DenselySampledSpectrum::from_spectrum(spectra.y);
|
||||
let b_bar = DenselySampledSpectrum::from_spectrum(spectra.z);
|
||||
let xyz_from_sensor_rgb: SquareMatrix<Float, 3>;
|
||||
|
||||
if let Some(illum) = sensor_illum {
|
||||
let source_white = illum.to_xyz().xy();
|
||||
let source_white = illum.to_xyz(spectra).xy();
|
||||
let target_white = output_colorspace.w;
|
||||
xyz_from_sensor_rgb = white_balance(source_white, target_white);
|
||||
} else {
|
||||
|
|
@ -633,7 +570,7 @@ impl VisibleSurface {
|
|||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Default, Copy, Clone)]
|
||||
#[derive(Default, Debug, Copy, Clone)]
|
||||
pub struct FilmBase {
|
||||
pub full_resolution: Point2i,
|
||||
pub pixel_bounds: Bounds2i,
|
||||
|
|
@ -643,7 +580,8 @@ pub struct FilmBase {
|
|||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[derive(Debug)]
|
||||
#[cfg_attr(target_os = "cuda", derive(Copy, Clone))]
|
||||
pub enum Film {
|
||||
RGB(RGBFilm),
|
||||
GBuffer(GBufferFilm),
|
||||
|
|
|
|||
|
|
@ -11,7 +11,8 @@ pub struct FilterSample {
|
|||
pub weight: Float,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct FilterSampler {
|
||||
pub domain: Bounds2f,
|
||||
pub distrib: PiecewiseConstant2D,
|
||||
|
|
@ -53,7 +54,7 @@ impl FilterSampler {
|
|||
return FilterSample { p, weight: 0.0 };
|
||||
}
|
||||
|
||||
let weight = *self.f.get_linear(pi.x() as usize + self.f.x_size()) / pdf;
|
||||
let weight = *self.f.get_linear(pi.x() as u32 + self.f.x_size()) / pdf;
|
||||
FilterSample { p, weight }
|
||||
}
|
||||
}
|
||||
|
|
@ -67,7 +68,7 @@ pub trait FilterTrait {
|
|||
|
||||
#[repr(C)]
|
||||
#[enum_dispatch(FilterTrait)]
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub enum Filter {
|
||||
Box(BoxFilter),
|
||||
Gaussian(GaussianFilter),
|
||||
|
|
|
|||
|
|
@ -7,8 +7,9 @@ pub mod traits;
|
|||
pub use self::bounds::{Bounds, Bounds2f, Bounds2fi, Bounds2i, Bounds3f, Bounds3fi, Bounds3i};
|
||||
pub use self::cone::DirectionCone;
|
||||
pub use self::primitives::{
|
||||
Frame, Normal, Normal3f, Point, Point2f, Point2fi, Point2i, Point3, Point3f, Point3fi, Point3i,
|
||||
Vector, Vector2, Vector2f, Vector2fi, Vector2i, Vector3, Vector3f, Vector3fi, Vector3i,
|
||||
Frame, MulAdd, Normal, Normal3f, Point, Point2f, Point2fi, Point2i, Point3, Point3f, Point3fi,
|
||||
Point3i, Vector, Vector2, Vector2f, Vector2fi, Vector2i, Vector3, Vector3f, Vector3fi,
|
||||
Vector3i,
|
||||
};
|
||||
pub use self::ray::{Ray, RayDifferential};
|
||||
pub use self::traits::{Lerp, Sqrt, Tuple, VectorLike};
|
||||
|
|
|
|||
|
|
@ -9,6 +9,19 @@ use std::ops::{
|
|||
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
|
||||
};
|
||||
|
||||
pub trait MulAdd<M = Self, A = Self> {
|
||||
type Output;
|
||||
fn mul_add(self, multiplier: M, addend: A) -> Self::Output;
|
||||
}
|
||||
|
||||
impl MulAdd<Float, Float> for Float {
|
||||
type Output = Float;
|
||||
#[inline(always)]
|
||||
fn mul_add(self, multiplier: Float, addend: Float) -> Self::Output {
|
||||
self.mul_add(multiplier, addend)
|
||||
}
|
||||
}
|
||||
|
||||
// N-dimensional displacement
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
|
|
@ -260,6 +273,27 @@ macro_rules! impl_op_assign {
|
|||
};
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! impl_mul_add {
|
||||
($Struct:ident) => {
|
||||
impl<T, const N: usize> MulAdd<T, $Struct<T, N>> for $Struct<T, N>
|
||||
where
|
||||
T: MulAdd<T, T, Output = T> + Copy,
|
||||
{
|
||||
type Output = $Struct<T, N>;
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_add(self, multiplier: T, addend: $Struct<T, N>) -> Self::Output {
|
||||
let mut result = self.0;
|
||||
for i in 0..N {
|
||||
result[i] = self.0[i].mul_add(multiplier, addend.0[i]);
|
||||
}
|
||||
Self(result)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! impl_float_vector_ops {
|
||||
($Struct:ident) => {
|
||||
|
|
@ -381,6 +415,10 @@ impl_accessors!(Vector);
|
|||
impl_accessors!(Point);
|
||||
impl_accessors!(Normal);
|
||||
|
||||
impl_mul_add!(Vector);
|
||||
impl_mul_add!(Point);
|
||||
impl_mul_add!(Normal);
|
||||
|
||||
// Convert from tuple of Floats, for parsing issues
|
||||
impl_tuple_conversions!(Vector);
|
||||
impl_tuple_conversions!(Point);
|
||||
|
|
@ -778,7 +816,8 @@ impl<T> Normal3<T>
|
|||
where
|
||||
T: Num + PartialOrd + Copy + Neg<Output = T> + Sqrt,
|
||||
{
|
||||
pub fn face_forward(self, v: Vector3<T>) -> Self {
|
||||
pub fn face_forward(self, v: impl Into<Vector3<T>>) -> Self {
|
||||
let v: Vector3<T> = v.into();
|
||||
if Vector3::<T>::from(self).dot(v) < T::zero() {
|
||||
-self
|
||||
} else {
|
||||
|
|
@ -787,8 +826,8 @@ where
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
|
||||
pub struct OctahedralVector {
|
||||
x: u16,
|
||||
y: u16,
|
||||
|
|
@ -850,6 +889,7 @@ impl From<OctahedralVector> for Vector3f {
|
|||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, Debug, Default, PartialEq)]
|
||||
pub struct Frame {
|
||||
pub x: Vector3f,
|
||||
|
|
|
|||
|
|
@ -2,16 +2,18 @@ use super::{Normal3f, Point3f, Point3fi, Vector3f, VectorLike};
|
|||
use crate::core::medium::Medium;
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::utils::math::{next_float_down, next_float_up};
|
||||
use crate::utils::ptr::Ptr;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Ray {
|
||||
pub o: Point3f,
|
||||
pub d: Vector3f,
|
||||
pub medium: *const Medium,
|
||||
pub time: Float,
|
||||
pub medium: Ptr<Medium>,
|
||||
// We do this instead of creating a trait for Rayable or some gnarly thing like that
|
||||
pub differential: *const RayDifferential,
|
||||
pub has_differentials: bool,
|
||||
pub differential: RayDifferential,
|
||||
}
|
||||
|
||||
impl Default for Ray {
|
||||
|
|
@ -19,20 +21,21 @@ impl Default for Ray {
|
|||
Self {
|
||||
o: Point3f::new(0.0, 0.0, 0.0),
|
||||
d: Vector3f::new(0.0, 0.0, 0.0),
|
||||
medium: None,
|
||||
medium: Ptr::null(),
|
||||
time: 0.0,
|
||||
differential: None,
|
||||
has_differentials: false,
|
||||
differential: RayDifferential::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Ray {
|
||||
pub fn new(o: Point3f, d: Vector3f, time: Option<Float>, medium: *const Medium) -> Self {
|
||||
pub fn new(o: Point3f, d: Vector3f, time: Option<Float>, medium: &Medium) -> Self {
|
||||
Self {
|
||||
o,
|
||||
d,
|
||||
time: time.unwrap_or_else(|| Self::default().time),
|
||||
medium,
|
||||
medium: Ptr::from(medium),
|
||||
..Self::default()
|
||||
}
|
||||
}
|
||||
|
|
@ -68,8 +71,9 @@ impl Ray {
|
|||
o: origin,
|
||||
d,
|
||||
time,
|
||||
medium: None,
|
||||
differential: None,
|
||||
medium: Ptr::null(),
|
||||
has_differentials: false,
|
||||
differential: RayDifferential::default(),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -95,13 +99,15 @@ impl Ray {
|
|||
o: pf,
|
||||
d,
|
||||
time,
|
||||
medium: None,
|
||||
differential: None,
|
||||
medium: Ptr::null(),
|
||||
has_differentials: false,
|
||||
differential: RayDifferential::default(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn scale_differentials(&mut self, s: Float) {
|
||||
if let Some(differential) = &mut self.differential {
|
||||
if self.has_differentials {
|
||||
let differential = &mut self.differential;
|
||||
differential.rx_origin = self.o + (differential.rx_origin - self.o) * s;
|
||||
differential.ry_origin = self.o + (differential.ry_origin - self.o) * s;
|
||||
differential.rx_direction = self.d + (differential.rx_direction - self.d) * s;
|
||||
|
|
|
|||
178
shared/src/core/image.rs
Normal file
178
shared/src/core/image.rs
Normal file
|
|
@ -0,0 +1,178 @@
|
|||
use crate::core::color::{ColorEncoding, ColorEncodingTrait, LINEAR};
|
||||
use crate::core::geometry::{Bounds2f, Point2f, Point2fi, Point2i};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::utils::containers::Array2D;
|
||||
use crate::utils::math::{f16_to_f32, lerp, square};
|
||||
use core::hash;
|
||||
use half::f16;
|
||||
use smallvec::{SmallVec, smallvec};
|
||||
use std::ops::{Deref, DerefMut};
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum WrapMode {
|
||||
Black,
|
||||
Clamp,
|
||||
Repeat,
|
||||
OctahedralSphere,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub struct WrapMode2D {
|
||||
pub uv: [WrapMode; 2],
|
||||
}
|
||||
|
||||
impl From<WrapMode> for WrapMode2D {
|
||||
fn from(w: WrapMode) -> Self {
|
||||
Self { uv: [w, w] }
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub enum PixelFormat {
|
||||
U8,
|
||||
F16,
|
||||
F32,
|
||||
}
|
||||
|
||||
impl PixelFormat {
|
||||
pub fn is_8bit(&self) -> bool {
|
||||
matches!(self, PixelFormat::U8)
|
||||
}
|
||||
|
||||
pub fn is_16bit(&self) -> bool {
|
||||
matches!(self, PixelFormat::F16)
|
||||
}
|
||||
|
||||
pub fn is_32bit(&self) -> bool {
|
||||
matches!(self, PixelFormat::F32)
|
||||
}
|
||||
|
||||
pub fn texel_bytes(&self) -> usize {
|
||||
match self {
|
||||
PixelFormat::U8 => 1,
|
||||
PixelFormat::F16 => 2,
|
||||
PixelFormat::F32 => 4,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub enum Pixels {
|
||||
U8(*const u8),
|
||||
F16(*const u16),
|
||||
F32(*const f32),
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Image {
|
||||
pub format: PixelFormat,
|
||||
pub pixels: Pixels,
|
||||
pub encoding: ColorEncoding,
|
||||
pub resolution: Point2i,
|
||||
pub n_channels: i32,
|
||||
}
|
||||
|
||||
impl Image {
|
||||
pub fn resolution(&self) -> Point2i {
|
||||
self.resolution
|
||||
}
|
||||
|
||||
pub fn is_valid(&self) -> bool {
|
||||
self.resolution.x() > 0. && self.resolution.y() > 0.
|
||||
}
|
||||
|
||||
pub fn format(&self) -> PixelFormat {
|
||||
self.format
|
||||
}
|
||||
|
||||
pub fn n_channels(&self) -> i32 {
|
||||
self.n_channels
|
||||
}
|
||||
|
||||
pub fn pixel_offset(&self, p: Point2i) -> u32 {
|
||||
let width = self.resolution.x() as u32;
|
||||
let idx = p.y() as u32 * width + p.x() as u32;
|
||||
idx * (self.n_channels as u32)
|
||||
}
|
||||
|
||||
pub fn get_channel_with_wrap(&self, p: Point2i, c: i32, wrap_mode: WrapMode2D) -> Float {
|
||||
if !self.remap_pixel_coords(&mut p, wrap_mode) {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
let offset = self.pixel_offset(p) + c;
|
||||
unsafe {
|
||||
match self.pixels {
|
||||
Pixels::U8(ptr) => {
|
||||
let raw_u8 = *ptr.add(offset);
|
||||
self.encoding.to_linear_scalar(raw_u8)
|
||||
}
|
||||
Pixels::F16(ptr) => {
|
||||
let half_bits = *ptr.add(offset);
|
||||
f16_to_f32(f16::from_bits(half_bits))
|
||||
}
|
||||
Pixels::F32(ptr) => *ptr.add(offset),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_channel(&self, p: Point2i, c: i32) -> Float {
|
||||
self.get_channel_with_wrap(p, c, WrapMode::Clamp.into())
|
||||
}
|
||||
|
||||
pub fn remap_pixel_coords(&self, p: &mut Point2i, wrap_mode: WrapMode2D) -> bool {
|
||||
for i in 0..2 {
|
||||
if p[i] >= 0 && p[i] < self.resolution[i] {
|
||||
continue;
|
||||
}
|
||||
match wrap_mode.uv[i] {
|
||||
WrapMode::Black => return false,
|
||||
WrapMode::Clamp => p[i] = p[i].clamp(0, self.resolution[i] - 1),
|
||||
WrapMode::Repeat => p[i] = p[i].rem_euclid(self.resolution[i]),
|
||||
WrapMode::OctahedralSphere => {
|
||||
p[i] = p[i].clamp(0, self.resolution[i] - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
|
||||
pub fn bilerp_channel(&self, p: Point2f, c: i32) -> Float {
|
||||
self.bilerp_channel_with_wrap(p, c, WrapMode::Clamp.into())
|
||||
}
|
||||
|
||||
pub fn bilerp_channel_with_wrap(&self, p: Point2f, c: i32, wrap_mode: WrapMode2D) -> Float {
|
||||
let x = p.x() * self.resolution.x() as Float - 0.5;
|
||||
let y = p.y() * self.resolution.y() as Float - 0.5;
|
||||
let xi = x.floor() as i32;
|
||||
let yi = y.floor() as i32;
|
||||
let dx = x - xi as Float;
|
||||
let dy = y - yi as Float;
|
||||
let v00 = self.get_channel_with_wrap(Point2i::new(xi, yi), c, wrap_mode);
|
||||
let v10 = self.get_channel_with_wrap(Point2i::new(xi + 1, yi), c, wrap_mode);
|
||||
let v01 = self.get_channel_with_wrap(Point2i::new(xi, yi + 1), c, wrap_mode);
|
||||
let v11 = self.get_channel_with_wrap(Point2i::new(xi + 1, yi + 1), c, wrap_mode);
|
||||
lerp(dy, lerp(dx, v00, v10), lerp(dx, v01, v11))
|
||||
}
|
||||
|
||||
pub fn lookup_nearest_channel_with_wrap(
|
||||
&self,
|
||||
p: Point2f,
|
||||
c: i32,
|
||||
wrap_mode: WrapMode2D,
|
||||
) -> Float {
|
||||
let pi = Point2i::new(
|
||||
p.x() as i32 * self.resolution.x(),
|
||||
p.y() as i32 * self.resolution.y(),
|
||||
);
|
||||
|
||||
self.get_channel_with_wrap(pi, c, wrap_mode)
|
||||
}
|
||||
|
||||
pub fn lookup_nearest_channel(&self, p: Point2f, c: i32) -> Float {
|
||||
self.lookup_nearest_channel_with_wrap(p, c, WrapMode::Clamp.into())
|
||||
}
|
||||
}
|
||||
|
|
@ -1,41 +1,92 @@
|
|||
use crate::Float;
|
||||
use crate::core::bssrdf::BSSRDF;
|
||||
use crate::core::bxdf::{BSDF, BxDF, BxDFFlags, DiffuseBxDF};
|
||||
use crate::core::camera::Camera;
|
||||
use crate::core::camera::{Camera, CameraTrait};
|
||||
use crate::core::geometry::{
|
||||
Normal3f, Point2f, Point3f, Point3fi, Ray, RayDifferential, Vector3f, VectorLike,
|
||||
};
|
||||
use crate::core::light::Light;
|
||||
use crate::core::image::Image;
|
||||
use crate::core::light::{Light, LightTrait};
|
||||
use crate::core::material::{
|
||||
Material, MaterialEvalContext, MaterialTrait, NormalBumpEvalContext, bump_map, normal_map,
|
||||
};
|
||||
use crate::core::medium::{Medium, MediumInterface, PhaseFunction};
|
||||
use crate::core::options::get_options;
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::sampler::{Sampler, SamplerTrait};
|
||||
use crate::core::shape::Shape;
|
||||
use crate::core::texture::{GPUFloatTexture, UniversalTextureEvaluator};
|
||||
use crate::images::Image;
|
||||
use crate::shapes::Shape;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::Ptr;
|
||||
use crate::utils::math::{clamp, difference_of_products, square};
|
||||
|
||||
use enum_dispatch::enum_dispatch;
|
||||
use std::any::Any;
|
||||
use std::default;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Default, Copy, Clone, Debug)]
|
||||
pub struct InteractionData {
|
||||
pub struct InteractionBase {
|
||||
pub pi: Point3fi,
|
||||
pub n: Normal3f,
|
||||
pub time: Float,
|
||||
pub wo: Vector3f,
|
||||
pub uv: Point2f,
|
||||
pub medium_interface: MediumInterface,
|
||||
pub medium: *const Medium,
|
||||
pub medium: Ptr<Medium>,
|
||||
}
|
||||
|
||||
impl InteractionBase {
|
||||
pub fn new_surface_geom(
|
||||
pi: Point3fi,
|
||||
n: Normal3f,
|
||||
uv: Point2f,
|
||||
wo: Vector3f,
|
||||
time: Float,
|
||||
) -> Self {
|
||||
Self {
|
||||
pi,
|
||||
n,
|
||||
uv,
|
||||
wo: wo.normalize(),
|
||||
time,
|
||||
medium_interface: MediumInterface::default(),
|
||||
medium: Ptr::null(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_medium(p: Point3f, wo: Vector3f, time: Float, medium: Ptr<Medium>) -> Self {
|
||||
Self {
|
||||
pi: Point3fi::new_from_point(p),
|
||||
n: Normal3f::zero(),
|
||||
uv: Point2f::default(),
|
||||
wo: wo.normalize(),
|
||||
time,
|
||||
medium_interface: MediumInterface::default(),
|
||||
medium,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_minimal(pi: Point3fi, n: Normal3f) -> Self {
|
||||
Self {
|
||||
pi,
|
||||
n,
|
||||
..Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_boundary(p: Point3f, time: Float, medium_interface: MediumInterface) -> Self {
|
||||
Self {
|
||||
pi: Point3fi::new_from_point(p),
|
||||
time,
|
||||
medium_interface,
|
||||
..Default::default()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait InteractionTrait: Send + Sync + std::fmt::Debug {
|
||||
fn get_common(&self) -> &InteractionData;
|
||||
fn get_common_mut(&mut self) -> &mut InteractionData;
|
||||
pub trait InteractionTrait {
|
||||
fn get_common(&self) -> &InteractionBase;
|
||||
fn get_common_mut(&mut self) -> &mut InteractionBase;
|
||||
|
||||
fn p(&self) -> Point3f {
|
||||
self.get_common().pi.into()
|
||||
|
|
@ -43,6 +94,7 @@ pub trait InteractionTrait: Send + Sync + std::fmt::Debug {
|
|||
fn pi(&self) -> Point3fi {
|
||||
self.get_common().pi
|
||||
}
|
||||
|
||||
fn time(&self) -> Float {
|
||||
self.get_common().time
|
||||
}
|
||||
|
|
@ -62,13 +114,13 @@ pub trait InteractionTrait: Send + Sync + std::fmt::Debug {
|
|||
false
|
||||
}
|
||||
|
||||
fn get_medium(&self, w: Vector3f) -> *const Medium {
|
||||
fn get_medium(&self, w: Vector3f) -> Ptr<Medium> {
|
||||
let data = self.get_common();
|
||||
if let Some(mi) = &data.medium_interface {
|
||||
if !data.medium_interface.inside.is_null() || !data.medium_interface.outside.is_null() {
|
||||
if w.dot(data.n.into()) > 0.0 {
|
||||
mi.outside
|
||||
data.medium_interface.outside
|
||||
} else {
|
||||
mi.inside
|
||||
data.medium_interface.inside
|
||||
}
|
||||
} else {
|
||||
data.medium
|
||||
|
|
@ -90,11 +142,10 @@ pub trait InteractionTrait: Send + Sync + std::fmt::Debug {
|
|||
ray
|
||||
}
|
||||
|
||||
fn spawn_ray_to_interaction(&self, other: InteractionData) -> Ray {
|
||||
fn spawn_ray_to_interaction(&self, other: InteractionBase) -> Ray {
|
||||
let data = self.get_common();
|
||||
|
||||
let mut ray =
|
||||
Ray::spawn_to_interaction(&data.pi, &data.n, data.time, &other_data.pi, &other_data.n);
|
||||
let mut ray = Ray::spawn_to_interaction(&data.pi, &data.n, data.time, &other.pi, &other.n);
|
||||
ray.medium = self.get_medium(ray.d);
|
||||
ray
|
||||
}
|
||||
|
|
@ -118,57 +169,40 @@ pub enum Interaction {
|
|||
}
|
||||
|
||||
impl Interaction {
|
||||
pub fn set_medium_interface(&mut self, mi: Option<MediumInterface>) {
|
||||
pub fn set_medium_interface(&mut self, mi: MediumInterface) {
|
||||
match self {
|
||||
Interaction::Surface(si) => si.common.medium_interface = mi,
|
||||
Interaction::Simple(si) => si.common.medium_interface = mi,
|
||||
Interaction::Medium(_) => {} // Medium interactions don't usually sit on boundaries
|
||||
Interaction::Simple(si) => si.common.medium_interface = mi,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Default, Clone, Copy)]
|
||||
pub struct SimpleInteraction {
|
||||
pub common: InteractionData,
|
||||
pub common: InteractionBase,
|
||||
}
|
||||
|
||||
impl SimpleInteraction {
|
||||
pub fn new(pi: Point3fi, time: Float, medium_interface: Option<MediumInterface>) -> Self {
|
||||
Self {
|
||||
common: InteractionData {
|
||||
pi,
|
||||
time,
|
||||
medium_interface,
|
||||
n: Normal3f::default(),
|
||||
wo: Vector3f::default(),
|
||||
medium: None,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_interface(p: Point3f, medium_interface: Option<MediumInterface>) -> Self {
|
||||
Self {
|
||||
common: InteractionData {
|
||||
pi: Point3fi::new_from_point(p),
|
||||
n: Normal3f::zero(),
|
||||
wo: Vector3f::zero(),
|
||||
time: 0.0,
|
||||
medium: None,
|
||||
medium_interface,
|
||||
},
|
||||
}
|
||||
pub fn new(common: InteractionBase) -> Self {
|
||||
Self { common }
|
||||
}
|
||||
}
|
||||
|
||||
impl InteractionTrait for SimpleInteraction {
|
||||
fn get_common(&self) -> &InteractionData {
|
||||
fn get_common(&self) -> &InteractionBase {
|
||||
&self.common
|
||||
}
|
||||
|
||||
fn get_common_mut(&mut self) -> &mut InteractionData {
|
||||
fn get_common_mut(&mut self) -> &mut InteractionBase {
|
||||
&mut self.common
|
||||
}
|
||||
fn is_surface_interaction(&self) -> bool {
|
||||
false
|
||||
}
|
||||
fn is_medium_interaction(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
|
|
@ -184,17 +218,16 @@ pub struct ShadingGeom {
|
|||
#[repr(C)]
|
||||
#[derive(Debug, Default, Clone, Copy)]
|
||||
pub struct SurfaceInteraction {
|
||||
pub common: InteractionData,
|
||||
pub uv: Point2f,
|
||||
pub common: InteractionBase,
|
||||
pub dpdu: Vector3f,
|
||||
pub dpdv: Vector3f,
|
||||
pub dndu: Normal3f,
|
||||
pub dndv: Normal3f,
|
||||
pub shading: ShadingGeom,
|
||||
pub face_index: u32,
|
||||
pub area_light: *const Light,
|
||||
pub material: *const Material,
|
||||
pub shape: *const Shape,
|
||||
pub area_light: Ptr<Light>,
|
||||
pub material: Ptr<Material>,
|
||||
pub shape: Ptr<Shape>,
|
||||
pub dpdx: Vector3f,
|
||||
pub dpdy: Vector3f,
|
||||
pub dudx: Float,
|
||||
|
|
@ -208,15 +241,17 @@ unsafe impl Sync for SurfaceInteraction {}
|
|||
|
||||
impl SurfaceInteraction {
|
||||
pub fn le(&self, w: Vector3f, lambda: &SampledWavelengths) -> SampledSpectrum {
|
||||
if let Some(area_light) = &self.area_light {
|
||||
area_light.l(self.p(), self.n(), self.uv, w, lambda)
|
||||
if !self.area_light.is_null() {
|
||||
self.area_light
|
||||
.l(self.p(), self.n(), self.common.uv, w, lambda)
|
||||
} else {
|
||||
SampledSpectrum::new(0.)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn compute_differentials(&mut self, r: &Ray, camera: &Camera, samples_per_pixel: i32) {
|
||||
let computed = if let Some(diff) = &r.differential {
|
||||
let computed = if !r.differential.is_null() {
|
||||
let diff = unsafe { &*r.differential };
|
||||
let dot_rx = self.common.n.dot(diff.rx_direction.into());
|
||||
let dot_ry = self.common.n.dot(diff.ry_direction.into());
|
||||
|
||||
|
|
@ -303,7 +338,8 @@ impl SurfaceInteraction {
|
|||
let new_ray = Ray::spawn(&self.pi(), &self.n(), ray.time, ray.d);
|
||||
ray.o = new_ray.o;
|
||||
// Skipping other variables, since they should not change when passing through surface
|
||||
if let Some(diff) = &mut ray.differential {
|
||||
if !ray.differential.is_null() {
|
||||
let diff = unsafe { &mut *ray.differential };
|
||||
diff.rx_origin += diff.rx_direction * t;
|
||||
diff.ry_origin += diff.ry_direction * t;
|
||||
}
|
||||
|
|
@ -320,8 +356,8 @@ impl SurfaceInteraction {
|
|||
self.compute_differentials(r, camera, sampler.samples_per_pixel() as i32);
|
||||
|
||||
let material = {
|
||||
let root_mat = self.material.as_deref()?;
|
||||
let mut active_mat: &Material = root_mat;
|
||||
let root_mat = self.material;
|
||||
let mut active_mat: &Material = *root_mat;
|
||||
let tex_eval = UniversalTextureEvaluator;
|
||||
while let Material::Mix(mix) = active_mat {
|
||||
// We need a context to evaluate the 'amount' texture
|
||||
|
|
@ -376,12 +412,12 @@ impl SurfaceInteraction {
|
|||
fn compute_bump_geom(
|
||||
&mut self,
|
||||
tex_eval: &UniversalTextureEvaluator,
|
||||
displacement: *const GPUFloatTexture,
|
||||
normal_image: *const Image,
|
||||
displacement: Ptr<GPUFloatTexture>,
|
||||
normal_image: Ptr<Image>,
|
||||
) {
|
||||
let ctx = NormalBumpEvalContext::from(&*self);
|
||||
let (dpdu, dpdv) = if let Some(disp) = displacement {
|
||||
bump_map(tex_eval, &disp, &ctx)
|
||||
let (dpdu, dpdv) = if !displacement.is_null() {
|
||||
bump_map(tex_eval, &displacement, &ctx)
|
||||
} else if let Some(map) = normal_image {
|
||||
normal_map(map.as_ref(), &ctx)
|
||||
} else {
|
||||
|
|
@ -492,15 +528,15 @@ impl SurfaceInteraction {
|
|||
}
|
||||
|
||||
impl InteractionTrait for SurfaceInteraction {
|
||||
fn get_common(&self) -> &InteractionData {
|
||||
fn get_common(&self) -> &InteractionBase {
|
||||
&self.common
|
||||
}
|
||||
|
||||
fn get_common_mut(&mut self) -> &mut InteractionData {
|
||||
fn get_common_mut(&mut self) -> &mut InteractionBase {
|
||||
&mut self.common
|
||||
}
|
||||
|
||||
fn get_medium(&self, w: Vector3f) -> *const Medium {
|
||||
fn get_medium(&self, w: Vector3f) -> Ptr<Medium> {
|
||||
self.common.medium_interface.as_ref().and_then(|interface| {
|
||||
if self.n().dot(w.into()) > 0.0 {
|
||||
interface.outside
|
||||
|
|
@ -536,14 +572,7 @@ impl SurfaceInteraction {
|
|||
}
|
||||
|
||||
Self {
|
||||
common: InteractionData {
|
||||
pi,
|
||||
n,
|
||||
time,
|
||||
wo,
|
||||
medium_interface: None,
|
||||
medium: None,
|
||||
},
|
||||
common: InteractionBase::new_surface_geom(pi, n, uv, wo, time),
|
||||
uv,
|
||||
dpdu,
|
||||
dpdv,
|
||||
|
|
@ -556,16 +585,16 @@ impl SurfaceInteraction {
|
|||
dndu,
|
||||
dndv,
|
||||
},
|
||||
material: None,
|
||||
material: Ptr::null(),
|
||||
face_index: 0,
|
||||
area_light: None,
|
||||
area_light: Ptr::null(),
|
||||
dpdx: Vector3f::zero(),
|
||||
dpdy: Vector3f::zero(),
|
||||
dudx: 0.0,
|
||||
dudy: 0.0,
|
||||
dvdx: 0.0,
|
||||
dvdy: 0.0,
|
||||
shape: core::ptr::null(),
|
||||
shape: Ptr::null(),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -579,7 +608,7 @@ impl SurfaceInteraction {
|
|||
dndv: Normal3f,
|
||||
time: Float,
|
||||
flip: bool,
|
||||
face_index: usize,
|
||||
face_index: u32,
|
||||
) -> Self {
|
||||
let mut si = Self::new(pi, uv, wo, dpdu, dpdv, dndu, dndv, time, flip);
|
||||
si.face_index = face_index;
|
||||
|
|
@ -597,7 +626,7 @@ impl SurfaceInteraction {
|
|||
) {
|
||||
self.shading.n = ns;
|
||||
if orientation {
|
||||
self.common.n = self.n().face_forward(self.shading.n.into());
|
||||
self.common.n = self.n().face_forward(self.shading.n);
|
||||
}
|
||||
self.shading.dpdu = dpdus;
|
||||
self.shading.dpdv = dpdvs;
|
||||
|
|
@ -607,14 +636,7 @@ impl SurfaceInteraction {
|
|||
|
||||
pub fn new_simple(pi: Point3fi, n: Normal3f, uv: Point2f) -> Self {
|
||||
Self {
|
||||
common: InteractionData {
|
||||
pi,
|
||||
n,
|
||||
time: 0.,
|
||||
wo: Vector3f::zero(),
|
||||
medium_interface: None,
|
||||
medium: None,
|
||||
},
|
||||
common: InteractionBase::new_surface_geom(pi, n, uv, Vector3f::zero(), 0.),
|
||||
uv,
|
||||
..Default::default()
|
||||
}
|
||||
|
|
@ -622,7 +644,7 @@ impl SurfaceInteraction {
|
|||
|
||||
pub fn new_minimal(pi: Point3fi, uv: Point2f) -> Self {
|
||||
Self {
|
||||
common: InteractionData {
|
||||
common: InteractionBase {
|
||||
pi,
|
||||
..Default::default()
|
||||
},
|
||||
|
|
@ -643,7 +665,7 @@ impl SurfaceInteraction {
|
|||
self.area_light = area;
|
||||
|
||||
if prim_medium_interface.is_medium_transition() {
|
||||
self.common.medium_interface = *prim_medium_interface;
|
||||
self.common.medium_interface = prim_medium_interface;
|
||||
} else {
|
||||
self.common.medium = ray_medium;
|
||||
}
|
||||
|
|
@ -653,10 +675,8 @@ impl SurfaceInteraction {
|
|||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MediumInteraction {
|
||||
pub common: InteractionData,
|
||||
pub medium: *const Medium,
|
||||
pub common: InteractionBase,
|
||||
pub phase: PhaseFunction,
|
||||
pub medium_interface: MediumInterface,
|
||||
}
|
||||
|
||||
impl MediumInteraction {
|
||||
|
|
@ -664,21 +684,12 @@ impl MediumInteraction {
|
|||
p: Point3f,
|
||||
wo: Vector3f,
|
||||
time: Float,
|
||||
medium: *const Medium,
|
||||
medium: Ptr<Medium>,
|
||||
phase: PhaseFunction,
|
||||
) -> Self {
|
||||
Self {
|
||||
common: InteractionData {
|
||||
pi: Point3fi::new_from_point(p),
|
||||
n: Normal3f::default(),
|
||||
time,
|
||||
wo: wo.normalize(),
|
||||
medium_interface: None,
|
||||
medium,
|
||||
},
|
||||
medium,
|
||||
common: InteractionBase::new_medium(p, wo, time, medium),
|
||||
phase,
|
||||
medium_interface: MediumInterface::empty(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -688,11 +699,11 @@ impl InteractionTrait for MediumInteraction {
|
|||
true
|
||||
}
|
||||
|
||||
fn get_common(&self) -> &InteractionData {
|
||||
fn get_common(&self) -> &InteractionBase {
|
||||
&self.common
|
||||
}
|
||||
|
||||
fn get_common_mut(&mut self) -> &mut InteractionData {
|
||||
fn get_common_mut(&mut self) -> &mut InteractionBase {
|
||||
&mut self.common
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3,13 +3,13 @@ use crate::core::geometry::{
|
|||
Bounds2f, Bounds3f, DirectionCone, Normal3f, Point2f, Point2i, Point3f, Point3fi, Ray,
|
||||
Vector3f, VectorLike, cos_theta,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::interaction::{
|
||||
Interaction, InteractionData, InteractionTrait, MediumInteraction, SimpleInteraction,
|
||||
Interaction, InteractionBase, InteractionTrait, MediumInteraction, SimpleInteraction,
|
||||
SurfaceInteraction,
|
||||
};
|
||||
use crate::core::medium::MediumInterface;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::images::Image;
|
||||
use crate::lights::*;
|
||||
use crate::spectra::{
|
||||
DenselySampledSpectrum, LAMBDA_MAX, LAMBDA_MIN, RGBColorSpace, RGBIlluminantSpectrum,
|
||||
|
|
@ -17,6 +17,7 @@ use crate::spectra::{
|
|||
};
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::math::{equal_area_sphere_to_square, radians, safe_sqrt, smooth_step, square};
|
||||
use crate::utils::ptr::Ptr;
|
||||
use crate::utils::sampling::PiecewiseConstant2D;
|
||||
use crate::{Float, PI};
|
||||
use bitflags::bitflags;
|
||||
|
|
@ -49,9 +50,9 @@ impl LightType {
|
|||
pub struct LightLeSample {
|
||||
pub l: SampledSpectrum,
|
||||
pub ray: Ray,
|
||||
pub intr: *const InteractionData,
|
||||
pub pdf_pos: Float,
|
||||
pub pdf_dir: Float,
|
||||
pub intr: Interaction,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
|
|
@ -60,12 +61,12 @@ pub struct LightLiSample {
|
|||
pub l: SampledSpectrum,
|
||||
pub wi: Vector3f,
|
||||
pub pdf: Float,
|
||||
pub p_light: InteractionData,
|
||||
pub p_light: Interaction,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl LightLiSample {
|
||||
pub fn new(l: SampledSpectrum, wi: Vector3f, pdf: Float, p_light: InteractionData) -> Self {
|
||||
pub fn new(l: SampledSpectrum, wi: Vector3f, pdf: Float, p_light: Interaction) -> Self {
|
||||
Self {
|
||||
l,
|
||||
wi,
|
||||
|
|
@ -140,32 +141,23 @@ impl From<&Interaction> for LightSampleContext {
|
|||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct LightBase {
|
||||
pub render_from_light: Transform,
|
||||
pub light_type: u32,
|
||||
pub light_type: LightType,
|
||||
pub medium_interface: MediumInterface,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl LightBase {
|
||||
pub fn new(
|
||||
light_type: LightType,
|
||||
render_from_light: &Transform,
|
||||
medium_interface: &MediumInterface,
|
||||
render_from_light: Transform,
|
||||
medium_interface: MediumInterface,
|
||||
) -> Self {
|
||||
Self {
|
||||
light_type,
|
||||
render_from_light: *render_from_light,
|
||||
medium_interface: medium_interface.clone(),
|
||||
render_from_light,
|
||||
medium_interface,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn lookup_spectrum(s: &Spectrum) -> DenselySampledSpectrum {
|
||||
let cache = SPECTRUM_CACHE.get_or_init(InternCache::new);
|
||||
let dense_spectrum = DenselySampledSpectrum::from_spectrum(s);
|
||||
cache.lookup(dense_spectrum).as_ref()
|
||||
}
|
||||
}
|
||||
|
||||
impl LightBase {
|
||||
fn l(
|
||||
&self,
|
||||
_p: Point3f,
|
||||
|
|
|
|||
|
|
@ -1,23 +1,23 @@
|
|||
use crate::materials::*;
|
||||
use enum_dispatch::enum_dispatch;
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::Float;
|
||||
use crate::core::bssrdf::BSSRDF;
|
||||
use crate::core::bxdf::{
|
||||
BSDF, BxDF, CoatedConductorBxDF, CoatedDiffuseBxDF, ConductorBxDF, DielectricBxDF, DiffuseBxDF,
|
||||
};
|
||||
use crate::core::geometry::{Frame, Normal3f, Point2f, Point3f, Vector2f, Vector3f, VectorLike};
|
||||
use crate::core::interaction::InteractionTrait;
|
||||
use crate::core::interaction::{Interaction, ShadingGeom, SurfaceInteraction};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::image::{Image, WrapMode, WrapMode2D};
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, ShadingGeom, SurfaceInteraction};
|
||||
use crate::core::scattering::TrowbridgeReitzDistribution;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{
|
||||
GPUFloatTexture, GPUSpectrumTexture, TextureEvalContext, TextureEvaluator,
|
||||
};
|
||||
use crate::images::{Image, WrapMode, WrapMode2D};
|
||||
use crate::materials::*;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::Ptr;
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::hash::hash_float;
|
||||
use crate::utils::math::clamp;
|
||||
|
||||
|
|
@ -155,7 +155,7 @@ pub fn bump_map<T: TextureEvaluator>(
|
|||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait MaterialTrait: Send + Sync + std::fmt::Debug {
|
||||
pub trait MaterialTrait {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
|
|
@ -172,8 +172,8 @@ pub trait MaterialTrait: Send + Sync + std::fmt::Debug {
|
|||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool;
|
||||
fn get_normal_map(&self) -> *const Image;
|
||||
fn get_displacement(&self) -> Option<GPUFloatTexture>;
|
||||
fn has_surface_scattering(&self) -> bool;
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture>;
|
||||
fn has_subsurface_scattering(&self) -> bool;
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
|
|
@ -191,729 +191,3 @@ pub enum Material {
|
|||
ThinDielectric(ThinDielectricMaterial),
|
||||
Mix(MixMaterial),
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct CoatedDiffuseMaterial {
|
||||
pub displacement: GPUFloatTexture,
|
||||
pub normal_map: *const Image,
|
||||
pub reflectance: GPUSpectrumTexture,
|
||||
pub albedo: GPUSpectrumTexture,
|
||||
pub u_roughness: GPUFloatTexture,
|
||||
pub v_roughness: GPUFloatTexture,
|
||||
pub thickness: GPUFloatTexture,
|
||||
pub g: GPUFloatTexture,
|
||||
pub eta: Spectrum,
|
||||
pub remap_roughness: bool,
|
||||
pub max_depth: usize,
|
||||
pub n_samples: usize,
|
||||
}
|
||||
|
||||
impl CoatedDiffuseMaterial {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(
|
||||
reflectance: GPUSpectrumTexture,
|
||||
u_roughness: GPUFloatTexture,
|
||||
v_roughness: GPUFloatTexture,
|
||||
thickness: GPUFloatTexture,
|
||||
albedo: GPUSpectrumTexture,
|
||||
g: GPUFloatTexture,
|
||||
eta: Spectrum,
|
||||
displacement: GPUFloatTexture,
|
||||
normal_map: *const Image,
|
||||
remap_roughness: bool,
|
||||
max_depth: usize,
|
||||
n_samples: usize,
|
||||
) -> Self {
|
||||
Self {
|
||||
displacement,
|
||||
normal_map,
|
||||
reflectance,
|
||||
albedo,
|
||||
u_roughness,
|
||||
v_roughness,
|
||||
thickness,
|
||||
g,
|
||||
eta,
|
||||
remap_roughness,
|
||||
max_depth,
|
||||
n_samples,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MaterialTrait for CoatedDiffuseMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let r = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.reflectance, ctx, lambda),
|
||||
0.,
|
||||
1.,
|
||||
);
|
||||
|
||||
let mut u_rough = tex_eval.evaluate_float(&self.u_roughness, ctx);
|
||||
let mut v_rough = tex_eval.evaluate_float(&self.v_roughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
u_rough = TrowbridgeReitzDistribution::roughness_to_alpha(u_rough);
|
||||
v_rough = TrowbridgeReitzDistribution::roughness_to_alpha(v_rough);
|
||||
}
|
||||
|
||||
let distrib = TrowbridgeReitzDistribution::new(u_rough, v_rough);
|
||||
|
||||
let thick = tex_eval.evaluate_float(&self.thickness, ctx);
|
||||
let mut sampled_eta = self.eta.evaluate(lambda[0]);
|
||||
if self.eta.is_constant() {
|
||||
let mut lambda = *lambda;
|
||||
lambda.terminate_secondary_inplace();
|
||||
}
|
||||
|
||||
if sampled_eta == 0. {
|
||||
sampled_eta = 1.
|
||||
}
|
||||
|
||||
let a = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.albedo, ctx, lambda),
|
||||
0.,
|
||||
1.,
|
||||
);
|
||||
|
||||
let gg = clamp(tex_eval.evaluate_float(&self.g, ctx), -1., 1.);
|
||||
let bxdf = BxDF::CoatedDiffuse(CoatedDiffuseBxDF::new(
|
||||
DielectricBxDF::new(sampled_eta, distrib),
|
||||
DiffuseBxDF::new(r),
|
||||
thick,
|
||||
a,
|
||||
gg,
|
||||
self.max_depth,
|
||||
self.n_samples,
|
||||
));
|
||||
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(
|
||||
&[
|
||||
&self.u_roughness,
|
||||
&self.v_roughness,
|
||||
&self.thickness,
|
||||
&self.g,
|
||||
],
|
||||
&[&self.reflectance, &self.albedo],
|
||||
)
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
Some(self.displacement.clone())
|
||||
}
|
||||
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct CoatedConductorMaterial {
|
||||
displacement: FloatTexture,
|
||||
normal_map: *const Image,
|
||||
interface_uroughness: FloatTexture,
|
||||
interface_vroughness: FloatTexture,
|
||||
thickness: FloatTexture,
|
||||
interface_eta: Spectrum,
|
||||
g: FloatTexture,
|
||||
albedo: SpectrumTexture,
|
||||
conductor_uroughness: FloatTexture,
|
||||
conductor_vroughness: FloatTexture,
|
||||
conductor_eta: Option<SpectrumTexture>,
|
||||
k: Option<SpectrumTexture>,
|
||||
reflectance: SpectrumTexture,
|
||||
remap_roughness: bool,
|
||||
max_depth: usize,
|
||||
n_samples: usize,
|
||||
}
|
||||
|
||||
impl CoatedConductorMaterial {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(
|
||||
displacement: FloatTexture,
|
||||
normal_map: Option<Arc<Image>>,
|
||||
interface_uroughness: FloatTexture,
|
||||
interface_vroughness: FloatTexture,
|
||||
thickness: FloatTexture,
|
||||
interface_eta: Spectrum,
|
||||
g: FloatTexture,
|
||||
albedo: SpectrumTexture,
|
||||
conductor_uroughness: FloatTexture,
|
||||
conductor_vroughness: FloatTexture,
|
||||
conductor_eta: Option<SpectrumTexture>,
|
||||
k: Option<SpectrumTexture>,
|
||||
reflectance: SpectrumTexture,
|
||||
remap_roughness: bool,
|
||||
max_depth: usize,
|
||||
n_samples: usize,
|
||||
) -> Self {
|
||||
Self {
|
||||
displacement,
|
||||
normal_map,
|
||||
interface_uroughness,
|
||||
interface_vroughness,
|
||||
thickness,
|
||||
interface_eta,
|
||||
g,
|
||||
albedo,
|
||||
conductor_uroughness,
|
||||
conductor_vroughness,
|
||||
conductor_eta,
|
||||
k,
|
||||
reflectance,
|
||||
remap_roughness,
|
||||
max_depth,
|
||||
n_samples,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MaterialTrait for CoatedConductorMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let mut iurough = tex_eval.evaluate_float(&self.interface_uroughness, ctx);
|
||||
let mut ivrough = tex_eval.evaluate_float(&self.interface_vroughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
iurough = TrowbridgeReitzDistribution::roughness_to_alpha(iurough);
|
||||
ivrough = TrowbridgeReitzDistribution::roughness_to_alpha(ivrough);
|
||||
}
|
||||
let interface_distrib = TrowbridgeReitzDistribution::new(iurough, ivrough);
|
||||
let thick = tex_eval.evaluate_float(&self.thickness, ctx);
|
||||
|
||||
let mut ieta = self.interface_eta.evaluate(lambda[0]);
|
||||
if self.interface_eta.is_constant() {
|
||||
let mut lambda = *lambda;
|
||||
lambda.terminate_secondary_inplace();
|
||||
}
|
||||
|
||||
if ieta == 0. {
|
||||
ieta = 1.;
|
||||
}
|
||||
|
||||
let (mut ce, mut ck) = if let Some(eta_tex) = &self.conductor_eta {
|
||||
let k_tex = self
|
||||
.k
|
||||
.as_ref()
|
||||
.expect("CoatedConductor: 'k' must be provided if 'conductor_eta' is present");
|
||||
let ce = tex_eval.evaluate_spectrum(eta_tex, ctx, lambda);
|
||||
let ck = tex_eval.evaluate_spectrum(k_tex, ctx, lambda);
|
||||
(ce, ck)
|
||||
} else {
|
||||
let r = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.reflectance, ctx, lambda),
|
||||
0.,
|
||||
0.9999,
|
||||
);
|
||||
let ce = SampledSpectrum::new(1.0);
|
||||
let one_minus_r = SampledSpectrum::new(1.) - r;
|
||||
let ck = 2. * r.sqrt() / SampledSpectrum::clamp_zero(&one_minus_r).sqrt();
|
||||
(ce, ck)
|
||||
};
|
||||
|
||||
ce /= ieta;
|
||||
ck /= ieta;
|
||||
|
||||
let mut curough = tex_eval.evaluate_float(&self.conductor_uroughness, ctx);
|
||||
let mut cvrough = tex_eval.evaluate_float(&self.conductor_vroughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
curough = TrowbridgeReitzDistribution::roughness_to_alpha(curough);
|
||||
cvrough = TrowbridgeReitzDistribution::roughness_to_alpha(cvrough);
|
||||
}
|
||||
|
||||
let conductor_distrib = TrowbridgeReitzDistribution::new(curough, cvrough);
|
||||
let a = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.albedo, ctx, lambda),
|
||||
0.,
|
||||
1.,
|
||||
);
|
||||
|
||||
let gg = clamp(tex_eval.evaluate_float(&self.g, ctx), -1., 1.);
|
||||
let bxdf = BxDF::CoatedConductor(CoatedConductorBxDF::new(
|
||||
DielectricBxDF::new(ieta, interface_distrib),
|
||||
ConductorBxDF::new(&conductor_distrib, ce, ck),
|
||||
thick,
|
||||
a,
|
||||
gg,
|
||||
self.max_depth,
|
||||
self.n_samples,
|
||||
));
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
let float_textures = [
|
||||
&self.interface_uroughness,
|
||||
&self.interface_vroughness,
|
||||
&self.thickness,
|
||||
&self.g,
|
||||
&self.conductor_uroughness,
|
||||
&self.conductor_vroughness,
|
||||
];
|
||||
|
||||
let mut spectrum_textures = Vec::with_capacity(4);
|
||||
|
||||
spectrum_textures.push(&self.albedo);
|
||||
|
||||
if let Some(eta) = &self.conductor_eta {
|
||||
spectrum_textures.push(eta);
|
||||
}
|
||||
if let Some(k) = &self.k {
|
||||
spectrum_textures.push(k);
|
||||
}
|
||||
|
||||
if self.conductor_eta.is_none() {
|
||||
spectrum_textures.push(&self.reflectance);
|
||||
}
|
||||
|
||||
tex_eval.can_evaluate(&float_textures, &spectrum_textures)
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
Some(self.displacement.clone())
|
||||
}
|
||||
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct ConductorMaterial;
|
||||
impl MaterialTrait for ConductorMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
todo!()
|
||||
}
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct DielectricMaterial {
|
||||
normal_map: *const Image,
|
||||
displacement: FloatTexture,
|
||||
u_roughness: FloatTexture,
|
||||
v_roughness: FloatTexture,
|
||||
remap_roughness: bool,
|
||||
eta: Spectrum,
|
||||
}
|
||||
|
||||
impl MaterialTrait for DielectricMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let mut sampled_eta = self.eta.evaluate(lambda[0]);
|
||||
if !self.eta.is_constant() {
|
||||
lambda.terminate_secondary();
|
||||
}
|
||||
|
||||
if sampled_eta == 0.0 {
|
||||
sampled_eta = 1.0;
|
||||
}
|
||||
|
||||
let mut u_rough = tex_eval.evaluate_float(&self.u_roughness, ctx);
|
||||
let mut v_rough = tex_eval.evaluate_float(&self.v_roughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
u_rough = TrowbridgeReitzDistribution::roughness_to_alpha(u_rough);
|
||||
v_rough = TrowbridgeReitzDistribution::roughness_to_alpha(v_rough);
|
||||
}
|
||||
|
||||
let distrib = TrowbridgeReitzDistribution::new(u_rough, v_rough);
|
||||
let bxdf = BxDF::Dielectric(DielectricBxDF::new(sampled_eta, distrib));
|
||||
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(&[&self.u_roughness, &self.v_roughness], &[])
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
self.normal_map.clone()
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
Some(self.displacement.clone())
|
||||
}
|
||||
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct DiffuseMaterial {
|
||||
normal_map: *const Image,
|
||||
displacement: FloatTexture,
|
||||
reflectance: SpectrumTexture,
|
||||
}
|
||||
|
||||
impl MaterialTrait for DiffuseMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let r = tex_eval.evaluate_spectrum(&self.reflectance, ctx, lambda);
|
||||
let bxdf = BxDF::Diffuse(DiffuseBxDF::new(r));
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(&[], &[&self.reflectance])
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
self.normal_map.clone()
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
Some(self.displacement.clone())
|
||||
}
|
||||
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct DiffuseTransmissionMaterial;
|
||||
|
||||
impl MaterialTrait for DiffuseTransmissionMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct HairMaterial;
|
||||
|
||||
impl MaterialTrait for HairMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
todo!()
|
||||
}
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MeasuredMaterial;
|
||||
impl MaterialTrait for MeasuredMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
todo!()
|
||||
}
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct SubsurfaceMaterial;
|
||||
impl MaterialTrait for SubsurfaceMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
todo!()
|
||||
}
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct ThinDielectricMaterial;
|
||||
impl MaterialTrait for ThinDielectricMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
todo!()
|
||||
}
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MixMaterial {
|
||||
pub amount: FloatTexture,
|
||||
pub materials: [Ptr<Material>; 2],
|
||||
}
|
||||
|
||||
impl MixMaterial {
|
||||
pub fn choose_material<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
) -> Option<&Material> {
|
||||
let amt = tex_eval.evaluate_float(&self.amount, ctx);
|
||||
|
||||
let index = if amt <= 0.0 {
|
||||
0
|
||||
} else if amt >= 1.0 {
|
||||
1
|
||||
} else {
|
||||
let u = hash_float(&(ctx.p, ctx.wo));
|
||||
if amt < u { 0 } else { 1 }
|
||||
};
|
||||
|
||||
self.materials[index].get()
|
||||
}
|
||||
}
|
||||
|
||||
impl MaterialTrait for MixMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
if let Some(mat) = self.choose_material(tex_eval, ctx) {
|
||||
mat.get_bsdf(tex_eval, ctx, lambda)
|
||||
} else {
|
||||
BSDF::empty()
|
||||
}
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(&[&self.amount], &[])
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> Option<Arc<Image>> {
|
||||
None
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> Option<FloatTexture> {
|
||||
panic!(
|
||||
"MixMaterial::get_displacement() shouldn't be called. \
|
||||
Displacement is not supported on Mix materials directly."
|
||||
);
|
||||
}
|
||||
|
||||
fn has_surface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,14 +5,16 @@ use crate::core::geometry::{
|
|||
Bounds3f, Frame, Point2f, Point3f, Point3i, Ray, Vector3f, VectorLike, spherical_direction,
|
||||
};
|
||||
use crate::core::pbrt::{Float, INV_4_PI, PI};
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::spectra::{
|
||||
BlackbodySpectrum, DenselySampledSpectrum, LAMBDA_MAX, LAMBDA_MIN, RGBIlluminantSpectrum,
|
||||
RGBUnboundedSpectrum, SampledSpectrum, SampledWavelengths,
|
||||
};
|
||||
use crate::utils::containers::SampledGrid;
|
||||
use crate::utils::math::{clamp, square};
|
||||
use crate::utils::ptr::Ptr;
|
||||
use crate::utils::rng::Rng;
|
||||
use crate::utils::transform::TransformGeneric;
|
||||
use crate::utils::transform::Transform;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
|
|
@ -37,7 +39,7 @@ pub trait PhaseFunctionTrait {
|
|||
|
||||
#[repr(C)]
|
||||
#[enum_dispatch(PhaseFunctionTrait)]
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum PhaseFunction {
|
||||
HenyeyGreenstein(HGPhaseFunction),
|
||||
}
|
||||
|
|
@ -88,7 +90,7 @@ impl PhaseFunctionTrait for HGPhaseFunction {
|
|||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct MajorantGrid {
|
||||
pub bounds: Bounds3f,
|
||||
pub res: Point3i,
|
||||
|
|
@ -433,7 +435,8 @@ pub trait MediumTrait: Send + Sync + std::fmt::Debug {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
#[enum_dispatch(MediumTrait)]
|
||||
pub enum Medium {
|
||||
Homogeneous(HomogeneousMedium),
|
||||
|
|
@ -443,7 +446,8 @@ pub enum Medium {
|
|||
NanoVDB(NanoVDBMedium),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct HomogeneousMedium {
|
||||
sigma_a_spec: DenselySampledSpectrum,
|
||||
sigma_s_spec: DenselySampledSpectrum,
|
||||
|
|
@ -514,7 +518,7 @@ impl MediumTrait for HomogeneousMedium {
|
|||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GridMedium {
|
||||
bounds: Bounds3f,
|
||||
render_from_medium: TransformGeneric<Float>,
|
||||
render_from_medium: Transform,
|
||||
sigma_a_spec: DenselySampledSpectrum,
|
||||
sigma_s_spec: DenselySampledSpectrum,
|
||||
density_grid: SampledGrid<Float>,
|
||||
|
|
@ -676,7 +680,7 @@ impl RGBGridMedium {
|
|||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(
|
||||
bounds: &Bounds3f,
|
||||
render_from_medium: &TransformGeneric<Float>,
|
||||
render_from_medium: &Transform,
|
||||
g: Float,
|
||||
sigma_a_grid: SampledGrid<RGBUnboundedSpectrum>,
|
||||
sigma_s_grid: SampledGrid<RGBUnboundedSpectrum>,
|
||||
|
|
@ -825,8 +829,8 @@ impl MediumTrait for NanoVDBMedium {
|
|||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct MediumInterface {
|
||||
pub inside: *const Medium,
|
||||
pub outside: *const Medium,
|
||||
pub inside: Ptr<Medium>,
|
||||
pub outside: Ptr<Medium>,
|
||||
}
|
||||
|
||||
unsafe impl Send for MediumInterface {}
|
||||
|
|
@ -835,25 +839,25 @@ unsafe impl Sync for MediumInterface {}
|
|||
impl Default for MediumInterface {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
inside: core::ptr::null(),
|
||||
outside: core::ptr::null(),
|
||||
inside: Ptr::null(),
|
||||
outside: Ptr::null(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MediumInterface {
|
||||
pub fn new(inside: *const Medium, outside: *const Medium) -> Self {
|
||||
Self { inside, outside }
|
||||
}
|
||||
|
||||
pub fn empty() -> Self {
|
||||
pub fn new(inside: &Medium, outside: &Medium) -> Self {
|
||||
Self {
|
||||
inside: core::ptr::null(),
|
||||
outside: core::ptr::null(),
|
||||
inside: Ptr::from(inside),
|
||||
outside: Ptr::from(outside),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn empty() -> Self {
|
||||
Self::default()
|
||||
}
|
||||
|
||||
pub fn is_medium_transition(&self) -> bool {
|
||||
self.inside != self.outside
|
||||
self.inside.0 != self.outside.0
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@ pub mod color;
|
|||
pub mod film;
|
||||
pub mod filter;
|
||||
pub mod geometry;
|
||||
pub mod image;
|
||||
pub mod interaction;
|
||||
pub mod light;
|
||||
pub mod material;
|
||||
|
|
@ -15,5 +16,6 @@ pub mod pbrt;
|
|||
pub mod primitive;
|
||||
pub mod sampler;
|
||||
pub mod scattering;
|
||||
pub mod shape;
|
||||
pub mod spectrum;
|
||||
pub mod texture;
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
use crate::core::geometry::Lerp;
|
||||
use core::sync::atomic::{AtomicU64, Ordering as SyncOrdering};
|
||||
use num_traits::{Num, PrimInt};
|
||||
use std::hash::Hash;
|
||||
use std::ops::{Add, Mul};
|
||||
use std::sync::atomic::{AtomicU64, Ordering as SyncOrdering};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
pub type Float = f32;
|
||||
|
|
@ -144,6 +144,7 @@ pub static RARE_EVENT_CONDITION_MET: AtomicU64 = AtomicU64::new(0);
|
|||
#[macro_export]
|
||||
macro_rules! check_rare {
|
||||
($frequency_threshold:expr, $condition:expr) => {
|
||||
use core::sync::atomic::{AtomicU64, Ordering as SyncOrdering};
|
||||
const CHECK_INTERVAL: u64 = 4096;
|
||||
|
||||
let total_calls = RARE_EVENT_TOTAL_CALLS.fetch_add(1, SyncOrdering::Relaxed);
|
||||
|
|
|
|||
|
|
@ -5,10 +5,11 @@ use crate::core::light::Light;
|
|||
use crate::core::material::Material;
|
||||
use crate::core::medium::{Medium, MediumInterface};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::shape::{Shape, ShapeIntersection, ShapeTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, TextureEvalContext};
|
||||
use crate::shapes::{Shape, ShapeIntersection, ShapeTrait};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::hash::hash_float;
|
||||
use crate::utils::transform::{AnimatedTransform, TransformGeneric};
|
||||
use crate::utils::transform::{AnimatedTransform, Transform};
|
||||
|
||||
use enum_dispatch::enum_dispatch;
|
||||
use std::sync::Arc;
|
||||
|
|
@ -87,14 +88,14 @@ impl PrimitiveTrait for GeometricPrimitive {
|
|||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct SimplePrimitive {
|
||||
shape: Arc<Shape>,
|
||||
material: Arc<Material>,
|
||||
shape: RelPtr<Shape>,
|
||||
material: RelPtr<Material>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TransformedPrimitive {
|
||||
primitive: Arc<dyn PrimitiveTrait>,
|
||||
render_from_primitive: TransformGeneric<Float>,
|
||||
pub primitive: RelPtr<Primitive>,
|
||||
pub render_from_primitive: Transform,
|
||||
}
|
||||
|
||||
impl PrimitiveTrait for TransformedPrimitive {
|
||||
|
|
@ -125,9 +126,10 @@ impl PrimitiveTrait for TransformedPrimitive {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct AnimatedPrimitive {
|
||||
primitive: Arc<dyn PrimitiveTrait>,
|
||||
primitive: RelPtr<Primitive>,
|
||||
render_from_primitive: AnimatedTransform,
|
||||
}
|
||||
|
||||
|
|
@ -158,11 +160,12 @@ impl PrimitiveTrait for AnimatedPrimitive {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct BVHAggregatePrimitive {
|
||||
max_prims_in_node: usize,
|
||||
primitives: Vec<Arc<dyn PrimitiveTrait>>,
|
||||
nodes: Vec<LinearBVHNode>,
|
||||
max_prims_in_node: u32,
|
||||
primitives: *const RelPtr<Primitive>,
|
||||
nodes: *const LinearBVHNode,
|
||||
}
|
||||
|
||||
impl PrimitiveTrait for BVHAggregatePrimitive {
|
||||
|
|
|
|||
|
|
@ -1,14 +1,8 @@
|
|||
use std::ops::RangeFull;
|
||||
|
||||
use enum_dispatch::enum_dispatch;
|
||||
use rand::seq::index::sample;
|
||||
|
||||
use crate::core::filter::FilterTrait;
|
||||
use crate::core::geometry::{Bounds2f, Point2f, Point2i, Vector2f};
|
||||
use crate::core::options::{PBRTOptions, get_options};
|
||||
use crate::core::pbrt::{Float, ONE_MINUS_EPSILON, PI, PI_OVER_2, PI_OVER_4, find_interval};
|
||||
use crate::utils::containers::Array2D;
|
||||
use crate::utils::error::FileLoc;
|
||||
use crate::utils::math::{
|
||||
BinaryPermuteScrambler, DigitPermutation, FastOwenScrambler, NoRandomizer, OwenScrambler,
|
||||
PRIME_TABLE_SIZE, Scrambler, clamp, compute_radical_inverse_permutations, encode_morton_2,
|
||||
|
|
@ -16,12 +10,14 @@ use crate::utils::math::{
|
|||
radical_inverse, round_up_pow2, scrambled_radical_inverse, sobol_interval_to_index,
|
||||
sobol_sample,
|
||||
};
|
||||
use crate::utils::parameters::ParameterDictionary;
|
||||
use crate::utils::rng::Rng;
|
||||
use crate::utils::sobol::N_SOBOL_DIMENSIONS;
|
||||
use crate::utils::{hash::*, sobol};
|
||||
use enum_dispatch::enum_dispatch;
|
||||
use rand::seq::index::sample;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default, Clone, Copy)]
|
||||
pub struct CameraSample {
|
||||
pub p_film: Point2f,
|
||||
pub p_lens: Point2f,
|
||||
|
|
@ -29,17 +25,6 @@ pub struct CameraSample {
|
|||
pub filter_weight: Float,
|
||||
}
|
||||
|
||||
impl Default for CameraSample {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
p_film: Point2f::default(),
|
||||
p_lens: Point2f::default(),
|
||||
time: 0.0,
|
||||
filter_weight: 1.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_camera_sample<S, F>(sampler: &mut S, p_pixel: Point2i, filter: &F) -> CameraSample
|
||||
where
|
||||
S: SamplerTrait,
|
||||
|
|
@ -54,43 +39,29 @@ where
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Default, Debug, Clone, Copy)]
|
||||
pub struct IndependentSampler {
|
||||
samples_per_pixel: usize,
|
||||
seed: u64,
|
||||
rng: Rng,
|
||||
pub samples_per_pixel: u32,
|
||||
pub seed: u64,
|
||||
pub rng: Rng,
|
||||
}
|
||||
|
||||
impl IndependentSampler {
|
||||
pub fn new(samples_per_pixel: usize, seed: u64) -> Self {
|
||||
pub fn new(samples_per_pixel: u32, seed: u64) -> Self {
|
||||
Self {
|
||||
samples_per_pixel,
|
||||
seed,
|
||||
rng: Rng::default(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn create(
|
||||
params: &ParameterDictionary,
|
||||
_full_res: Point2i,
|
||||
_loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
let options = get_options();
|
||||
let nsamp = options
|
||||
.quick_render
|
||||
.then_some(1)
|
||||
.or(options.pixel_samples)
|
||||
.unwrap_or_else(|| params.get_one_int("pixelsamples", 16));
|
||||
let seed = params.get_one_int("seed", options.seed);
|
||||
Ok(Self::new(nsamp as usize, seed as u64))
|
||||
}
|
||||
}
|
||||
|
||||
impl SamplerTrait for IndependentSampler {
|
||||
fn samples_per_pixel(&self) -> usize {
|
||||
fn samples_per_pixel(&self) -> u32 {
|
||||
self.samples_per_pixel
|
||||
}
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: usize, dim: Option<usize>) {
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: u32, dim: Option<u32>) {
|
||||
let hash_input = [p.x() as u64, p.y() as u64, self.seed];
|
||||
let sequence_index = hash_buffer(&hash_input, 0);
|
||||
self.rng.set_sequence(sequence_index);
|
||||
|
|
@ -111,7 +82,8 @@ impl SamplerTrait for IndependentSampler {
|
|||
|
||||
const MAX_HALTON_RESOLUTION: i32 = 128;
|
||||
|
||||
#[derive(Debug, Default, Clone, PartialEq, Eq)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default, Clone, PartialEq, Eq, Copy)]
|
||||
pub enum RandomizeStrategy {
|
||||
#[default]
|
||||
None,
|
||||
|
|
@ -120,21 +92,22 @@ pub enum RandomizeStrategy {
|
|||
Owen,
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Default, Debug, Clone, Copy)]
|
||||
pub struct HaltonSampler {
|
||||
samples_per_pixel: usize,
|
||||
samples_per_pixel: u32,
|
||||
randomize: RandomizeStrategy,
|
||||
digit_permutations: Vec<DigitPermutation>,
|
||||
base_scales: [u64; 2],
|
||||
base_exponents: [u64; 2],
|
||||
mult_inverse: [u64; 2],
|
||||
halton_index: u64,
|
||||
dim: usize,
|
||||
dim: u32,
|
||||
digit_permutations: *const DigitPermutation,
|
||||
}
|
||||
|
||||
impl HaltonSampler {
|
||||
pub fn new(
|
||||
samples_per_pixel: usize,
|
||||
samples_per_pixel: u32,
|
||||
full_res: Point2i,
|
||||
randomize: RandomizeStrategy,
|
||||
seed: u64,
|
||||
|
|
@ -180,7 +153,7 @@ impl HaltonSampler {
|
|||
}
|
||||
}
|
||||
|
||||
fn sample_dimension(&self, dimension: usize) -> Float {
|
||||
fn sample_dimension(&self, dimension: u32) -> Float {
|
||||
if self.randomize == RandomizeStrategy::None {
|
||||
radical_inverse(dimension, self.halton_index)
|
||||
} else if self.randomize == RandomizeStrategy::PermuteDigits {
|
||||
|
|
@ -214,45 +187,14 @@ impl HaltonSampler {
|
|||
|
||||
(yp, xp - d * yp)
|
||||
}
|
||||
|
||||
pub fn create(
|
||||
params: &ParameterDictionary,
|
||||
full_res: Point2i,
|
||||
loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
let options = get_options();
|
||||
let nsamp = options
|
||||
.quick_render
|
||||
.then_some(1)
|
||||
.or(options.pixel_samples)
|
||||
.unwrap_or_else(|| params.get_one_int("pixelsamples", 16));
|
||||
let seed = params.get_one_int("seed", options.seed);
|
||||
let s = match params
|
||||
.get_one_string("randomization", "permutedigits")
|
||||
.as_str()
|
||||
{
|
||||
"none" => RandomizeStrategy::None,
|
||||
"permutedigits" => RandomizeStrategy::PermuteDigits,
|
||||
"fastowen" => RandomizeStrategy::FastOwen,
|
||||
"owen" => RandomizeStrategy::Owen,
|
||||
_ => {
|
||||
return Err(format!(
|
||||
"{}: Unknown randomization strategy for Halton",
|
||||
loc
|
||||
));
|
||||
}
|
||||
};
|
||||
|
||||
Ok(HaltonSampler::new(nsamp as usize, full_res, s, seed as u64))
|
||||
}
|
||||
}
|
||||
|
||||
impl SamplerTrait for HaltonSampler {
|
||||
fn samples_per_pixel(&self) -> usize {
|
||||
fn samples_per_pixel(&self) -> u32 {
|
||||
self.samples_per_pixel
|
||||
}
|
||||
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: usize, dim: Option<usize>) {
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: u32, dim: Option<u32>) {
|
||||
self.halton_index = 0;
|
||||
|
||||
let sample_stride = self.base_scales[0] * self.base_scales[1];
|
||||
|
|
@ -287,14 +229,14 @@ impl SamplerTrait for HaltonSampler {
|
|||
}
|
||||
|
||||
fn get1d(&mut self) -> Float {
|
||||
if self.dim > PRIME_TABLE_SIZE {
|
||||
if self.dim > PRIME_TABLE_SIZE as u32 {
|
||||
self.dim = 2;
|
||||
}
|
||||
self.sample_dimension(self.dim)
|
||||
}
|
||||
|
||||
fn get2d(&mut self) -> Point2f {
|
||||
if self.dim > PRIME_TABLE_SIZE {
|
||||
if self.dim > PRIME_TABLE_SIZE as u32 {
|
||||
self.dim = 2;
|
||||
}
|
||||
let dim = self.dim;
|
||||
|
|
@ -310,22 +252,23 @@ impl SamplerTrait for HaltonSampler {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Default, Debug, Clone, Copy)]
|
||||
pub struct StratifiedSampler {
|
||||
x_pixel_samples: usize,
|
||||
y_pixel_samples: usize,
|
||||
x_pixel_samples: u32,
|
||||
y_pixel_samples: u32,
|
||||
jitter: bool,
|
||||
seed: u64,
|
||||
rng: Rng,
|
||||
pixel: Point2i,
|
||||
sample_index: usize,
|
||||
dim: usize,
|
||||
sample_index: u32,
|
||||
dim: u32,
|
||||
}
|
||||
|
||||
impl StratifiedSampler {
|
||||
pub fn new(
|
||||
x_pixel_samples: usize,
|
||||
y_pixel_samples: usize,
|
||||
x_pixel_samples: u32,
|
||||
y_pixel_samples: u32,
|
||||
seed: Option<u64>,
|
||||
jitter: bool,
|
||||
) -> Self {
|
||||
|
|
@ -340,43 +283,14 @@ impl StratifiedSampler {
|
|||
dim: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn create(
|
||||
params: &ParameterDictionary,
|
||||
_full_res: Point2i,
|
||||
_loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
let options = get_options();
|
||||
let jitter = params.get_one_bool("jitter", true);
|
||||
let (x_samples, y_samples) = if options.quick_render {
|
||||
(1, 1)
|
||||
} else if let Some(n) = options.pixel_samples {
|
||||
let div = (n as f64).sqrt() as i32;
|
||||
let y = (1..=div).rev().find(|d| n % d == 0).unwrap();
|
||||
|
||||
(n / y, y)
|
||||
} else {
|
||||
(
|
||||
params.get_one_int("xsamples", 4),
|
||||
params.get_one_int("ysamples", 4),
|
||||
)
|
||||
};
|
||||
let seed = params.get_one_int("seed", options.seed);
|
||||
Ok(Self::new(
|
||||
x_samples as usize,
|
||||
y_samples as usize,
|
||||
Some(seed as u64),
|
||||
jitter,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
impl SamplerTrait for StratifiedSampler {
|
||||
fn samples_per_pixel(&self) -> usize {
|
||||
fn samples_per_pixel(&self) -> u32 {
|
||||
self.x_pixel_samples * self.y_pixel_samples
|
||||
}
|
||||
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: usize, dim: Option<usize>) {
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: u32, dim: Option<u32>) {
|
||||
self.pixel = p;
|
||||
self.sample_index = sample_index;
|
||||
let hash_input = [p.x() as u64, p.y() as u64, self.seed];
|
||||
|
|
@ -446,18 +360,19 @@ impl SamplerTrait for StratifiedSampler {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Default, Debug, Clone, Copy)]
|
||||
pub struct PaddedSobolSampler {
|
||||
samples_per_pixel: usize,
|
||||
samples_per_pixel: u32,
|
||||
seed: u64,
|
||||
randomize: RandomizeStrategy,
|
||||
pixel: Point2i,
|
||||
sample_index: usize,
|
||||
dim: usize,
|
||||
sample_index: u32,
|
||||
dim: u32,
|
||||
}
|
||||
|
||||
impl PaddedSobolSampler {
|
||||
pub fn new(samples_per_pixel: usize, randomize: RandomizeStrategy, seed: Option<u64>) -> Self {
|
||||
pub fn new(samples_per_pixel: u32, randomize: RandomizeStrategy, seed: Option<u64>) -> Self {
|
||||
Self {
|
||||
samples_per_pixel,
|
||||
seed: seed.unwrap_or(0),
|
||||
|
|
@ -468,7 +383,7 @@ impl PaddedSobolSampler {
|
|||
}
|
||||
}
|
||||
|
||||
fn sample_dimension(&self, dimension: usize, a: u32, hash: u32) -> Float {
|
||||
fn sample_dimension(&self, dimension: u32, a: u32, hash: u32) -> Float {
|
||||
if self.randomize == RandomizeStrategy::None {
|
||||
return sobol_sample(a as u64, dimension, NoRandomizer);
|
||||
}
|
||||
|
|
@ -483,41 +398,13 @@ impl PaddedSobolSampler {
|
|||
RandomizeStrategy::None => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn create(
|
||||
params: &ParameterDictionary,
|
||||
_full_res: Point2i,
|
||||
loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
let options = get_options();
|
||||
let nsamp = options
|
||||
.quick_render
|
||||
.then_some(1)
|
||||
.or(options.pixel_samples)
|
||||
.unwrap_or_else(|| params.get_one_int("pixelsamples", 16));
|
||||
let seed = params.get_one_int("seed", options.seed);
|
||||
let s = match params.get_one_string("randomization", "fastowen").as_str() {
|
||||
"none" => RandomizeStrategy::None,
|
||||
"permutedigits" => RandomizeStrategy::PermuteDigits,
|
||||
"fastowen" => RandomizeStrategy::FastOwen,
|
||||
"owen" => RandomizeStrategy::Owen,
|
||||
_ => {
|
||||
return Err(format!(
|
||||
"{}: Unknown randomization strategy for ZSobol",
|
||||
loc
|
||||
));
|
||||
}
|
||||
};
|
||||
|
||||
Ok(Self::new(nsamp as usize, s, Some(seed as u64)))
|
||||
}
|
||||
}
|
||||
|
||||
impl SamplerTrait for PaddedSobolSampler {
|
||||
fn samples_per_pixel(&self) -> usize {
|
||||
fn samples_per_pixel(&self) -> u32 {
|
||||
self.samples_per_pixel
|
||||
}
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: usize, dim: Option<usize>) {
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: u32, dim: Option<u32>) {
|
||||
self.pixel = p;
|
||||
self.sample_index = sample_index;
|
||||
self.dim = dim.unwrap_or(0);
|
||||
|
|
@ -565,18 +452,18 @@ impl SamplerTrait for PaddedSobolSampler {
|
|||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
pub struct SobolSampler {
|
||||
samples_per_pixel: usize,
|
||||
samples_per_pixel: u32,
|
||||
scale: i32,
|
||||
seed: u64,
|
||||
randomize: RandomizeStrategy,
|
||||
pixel: Point2i,
|
||||
dim: usize,
|
||||
dim: u32,
|
||||
sobol_index: u64,
|
||||
}
|
||||
|
||||
impl SobolSampler {
|
||||
pub fn new(
|
||||
samples_per_pixel: usize,
|
||||
samples_per_pixel: u32,
|
||||
full_resolution: Point2i,
|
||||
randomize: RandomizeStrategy,
|
||||
seed: Option<u64>,
|
||||
|
|
@ -593,7 +480,7 @@ impl SobolSampler {
|
|||
}
|
||||
}
|
||||
|
||||
fn sample_dimension(&self, dimension: usize) -> Float {
|
||||
fn sample_dimension(&self, dimension: u32) -> Float {
|
||||
if self.randomize == RandomizeStrategy::None {
|
||||
return sobol_sample(self.sobol_index, dimension, NoRandomizer);
|
||||
}
|
||||
|
|
@ -614,41 +501,13 @@ impl SobolSampler {
|
|||
RandomizeStrategy::None => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn create(
|
||||
params: &ParameterDictionary,
|
||||
full_res: Point2i,
|
||||
loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
let options = get_options();
|
||||
let nsamp = options
|
||||
.quick_render
|
||||
.then_some(1)
|
||||
.or(options.pixel_samples)
|
||||
.unwrap_or_else(|| params.get_one_int("pixelsamples", 16));
|
||||
let seed = params.get_one_int("seed", options.seed);
|
||||
let s = match params.get_one_string("randomization", "fastowen").as_str() {
|
||||
"none" => RandomizeStrategy::None,
|
||||
"permutedigits" => RandomizeStrategy::PermuteDigits,
|
||||
"fastowen" => RandomizeStrategy::FastOwen,
|
||||
"owen" => RandomizeStrategy::Owen,
|
||||
_ => {
|
||||
return Err(format!(
|
||||
"{}: Unknown randomization strategy for ZSobol",
|
||||
loc
|
||||
));
|
||||
}
|
||||
};
|
||||
|
||||
Ok(Self::new(nsamp as usize, full_res, s, Some(seed as u64)))
|
||||
}
|
||||
}
|
||||
|
||||
impl SamplerTrait for SobolSampler {
|
||||
fn samples_per_pixel(&self) -> usize {
|
||||
fn samples_per_pixel(&self) -> u32 {
|
||||
self.samples_per_pixel
|
||||
}
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: usize, dim: Option<usize>) {
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: u32, dim: Option<u32>) {
|
||||
self.pixel = p;
|
||||
self.dim = 2.max(dim.unwrap_or(0));
|
||||
self.sobol_index =
|
||||
|
|
@ -656,7 +515,7 @@ impl SamplerTrait for SobolSampler {
|
|||
}
|
||||
|
||||
fn get1d(&mut self) -> Float {
|
||||
if self.dim >= N_SOBOL_DIMENSIONS {
|
||||
if self.dim >= N_SOBOL_DIMENSIONS as u32 {
|
||||
self.dim = 2;
|
||||
}
|
||||
|
||||
|
|
@ -666,7 +525,7 @@ impl SamplerTrait for SobolSampler {
|
|||
}
|
||||
|
||||
fn get2d(&mut self) -> Point2f {
|
||||
if self.dim >= N_SOBOL_DIMENSIONS {
|
||||
if self.dim >= N_SOBOL_DIMENSIONS as u32 {
|
||||
self.dim = 2;
|
||||
}
|
||||
let u = Point2f::new(
|
||||
|
|
@ -696,14 +555,15 @@ impl SamplerTrait for SobolSampler {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Default, Copy, Debug, Clone)]
|
||||
pub struct ZSobolSampler {
|
||||
randomize: RandomizeStrategy,
|
||||
seed: u64,
|
||||
log2_samples_per_pixel: u32,
|
||||
n_base4_digits: u32,
|
||||
morton_index: u64,
|
||||
dim: usize,
|
||||
dim: u32,
|
||||
}
|
||||
|
||||
impl ZSobolSampler {
|
||||
|
|
@ -769,7 +629,7 @@ impl ZSobolSampler {
|
|||
let mix_input = higher_digits ^ (0x55555555 * self.dim as u64);
|
||||
let p = (mix_bits(mix_input) >> 24) % 24;
|
||||
|
||||
digit = PERMUTATIONS[p as usize][digit as usize] as u64;
|
||||
digit = PERMUTATIONS[p as u32][digit as u32] as u64;
|
||||
|
||||
sample_index |= digit << digit_shift;
|
||||
}
|
||||
|
|
@ -781,46 +641,13 @@ impl ZSobolSampler {
|
|||
|
||||
sample_index
|
||||
}
|
||||
|
||||
pub fn create(
|
||||
params: &ParameterDictionary,
|
||||
full_res: Point2i,
|
||||
loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
let options = get_options();
|
||||
let nsamp = options
|
||||
.quick_render
|
||||
.then_some(1)
|
||||
.or(options.pixel_samples)
|
||||
.unwrap_or_else(|| params.get_one_int("pixelsamples", 16));
|
||||
let seed = params.get_one_int("seed", options.seed);
|
||||
let s = match params.get_one_string("randomization", "fastowen").as_str() {
|
||||
"none" => RandomizeStrategy::None,
|
||||
"permutedigits" => RandomizeStrategy::PermuteDigits,
|
||||
"fastowen" => RandomizeStrategy::FastOwen,
|
||||
"owen" => RandomizeStrategy::Owen,
|
||||
_ => {
|
||||
return Err(format!(
|
||||
"{}: Unknown randomization strategy for ZSobol",
|
||||
loc
|
||||
));
|
||||
}
|
||||
};
|
||||
|
||||
Ok(ZSobolSampler::new(
|
||||
nsamp as u32,
|
||||
full_res,
|
||||
s,
|
||||
Some(seed as u64),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
impl SamplerTrait for ZSobolSampler {
|
||||
fn samples_per_pixel(&self) -> usize {
|
||||
fn samples_per_pixel(&self) -> u32 {
|
||||
todo!()
|
||||
}
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: usize, dim: Option<usize>) {
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: u32, dim: Option<u32>) {
|
||||
self.dim = dim.unwrap_or(0);
|
||||
self.morton_index = (encode_morton_2(p.x() as u32, p.y() as u32)
|
||||
<< self.log2_samples_per_pixel)
|
||||
|
|
@ -886,10 +713,10 @@ impl SamplerTrait for ZSobolSampler {
|
|||
#[derive(Default, Debug, Clone)]
|
||||
pub struct MLTSampler;
|
||||
impl SamplerTrait for MLTSampler {
|
||||
fn samples_per_pixel(&self) -> usize {
|
||||
fn samples_per_pixel(&self) -> u32 {
|
||||
todo!()
|
||||
}
|
||||
fn start_pixel_sample(&mut self, _p: Point2i, _sample_index: usize, _dim: Option<usize>) {
|
||||
fn start_pixel_sample(&mut self, _p: Point2i, _sample_index: u32, _dim: Option<u32>) {
|
||||
todo!()
|
||||
}
|
||||
fn get1d(&mut self) -> Float {
|
||||
|
|
@ -905,8 +732,8 @@ impl SamplerTrait for MLTSampler {
|
|||
|
||||
#[enum_dispatch]
|
||||
pub trait SamplerTrait {
|
||||
fn samples_per_pixel(&self) -> usize;
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: usize, dim: Option<usize>);
|
||||
fn samples_per_pixel(&self) -> u32;
|
||||
fn start_pixel_sample(&mut self, p: Point2i, sample_index: u32, dim: Option<u32>);
|
||||
fn get1d(&mut self) -> Float;
|
||||
fn get2d(&mut self) -> Point2f;
|
||||
fn get_pixel2d(&mut self) -> Point2f;
|
||||
|
|
@ -923,40 +750,3 @@ pub enum Sampler {
|
|||
ZSobol(ZSobolSampler),
|
||||
MLT(MLTSampler),
|
||||
}
|
||||
|
||||
impl Sampler {
|
||||
pub fn create(
|
||||
name: &str,
|
||||
params: &ParameterDictionary,
|
||||
full_res: Point2i,
|
||||
loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
match name {
|
||||
"zsobol" => {
|
||||
let sampler = ZSobolSampler::create(params, full_res, loc)?;
|
||||
Ok(Sampler::ZSobol(sampler))
|
||||
}
|
||||
"paddedsobol" => {
|
||||
let sampler = PaddedSobolSampler::create(params, full_res, loc)?;
|
||||
Ok(Sampler::PaddedSobol(sampler))
|
||||
}
|
||||
"halton" => {
|
||||
let sampler = HaltonSampler::create(params, full_res, loc)?;
|
||||
Ok(Sampler::Halton(sampler))
|
||||
}
|
||||
"sobol" => {
|
||||
let sampler = SobolSampler::create(params, full_res, loc)?;
|
||||
Ok(Sampler::Sobol(sampler))
|
||||
}
|
||||
"Independent" => {
|
||||
let sampler = IndependentSampler::create(params, full_res, loc)?;
|
||||
Ok(Sampler::Independent(sampler))
|
||||
}
|
||||
"stratified" => {
|
||||
let sampler = StratifiedSampler::create(params, full_res, loc)?;
|
||||
Ok(Sampler::Stratified(sampler))
|
||||
}
|
||||
_ => Err(format!("Film type '{}' unknown at {}", name, loc)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ use crate::utils::sampling::sample_uniform_disk_polar;
|
|||
|
||||
use num::complex::Complex;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default, Clone, Copy)]
|
||||
pub struct TrowbridgeReitzDistribution {
|
||||
alpha_x: Float,
|
||||
|
|
|
|||
160
shared/src/core/shape.rs
Normal file
160
shared/src/core/shape.rs
Normal file
|
|
@ -0,0 +1,160 @@
|
|||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3f,
|
||||
Vector3fi, VectorLike,
|
||||
};
|
||||
use crate::core::interaction::{
|
||||
Interaction, InteractionTrait, MediumInteraction, SurfaceInteraction,
|
||||
};
|
||||
use crate::core::light::Light;
|
||||
use crate::core::material::Material;
|
||||
use crate::core::medium::{Medium, MediumInterface};
|
||||
use crate::core::pbrt::{Float, PI};
|
||||
use crate::shapes::*;
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::math::{next_float_down, next_float_up};
|
||||
use enum_dispatch::enum_dispatch;
|
||||
|
||||
// Define Intersection objects. This only varies for
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ShapeIntersection {
|
||||
pub intr: SurfaceInteraction,
|
||||
pub t_hit: Float,
|
||||
}
|
||||
|
||||
impl ShapeIntersection {
|
||||
pub fn new(intr: SurfaceInteraction, t_hit: Float) -> Self {
|
||||
Self { intr, t_hit }
|
||||
}
|
||||
|
||||
pub fn t_hit(&self) -> Float {
|
||||
self.t_hit
|
||||
}
|
||||
|
||||
pub fn set_t_hit(&mut self, new_t: Float) {
|
||||
self.t_hit = new_t;
|
||||
}
|
||||
|
||||
pub fn set_intersection_properties(
|
||||
&mut self,
|
||||
mtl: *const Material,
|
||||
area: *const Light,
|
||||
prim_medium_interface: *const MediumInterface,
|
||||
ray_medium: *const Medium,
|
||||
) {
|
||||
let ray_medium = unsafe { *prim_medium_interface };
|
||||
self.intr
|
||||
.set_intersection_properties(mtl, area, prim_medium_interface, ray_medium);
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct QuadricIntersection {
|
||||
pub t_hit: Float,
|
||||
pub p_obj: Point3f,
|
||||
pub phi: Float,
|
||||
}
|
||||
|
||||
impl QuadricIntersection {
|
||||
pub fn new(t_hit: Float, p_obj: Point3f, phi: Float) -> Self {
|
||||
Self { t_hit, p_obj, phi }
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ShapeSample {
|
||||
pub intr: Interaction,
|
||||
pub pdf: Float,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ShapeSampleContext {
|
||||
pub pi: Point3fi,
|
||||
pub n: Normal3f,
|
||||
pub ns: Normal3f,
|
||||
pub time: Float,
|
||||
}
|
||||
|
||||
impl ShapeSampleContext {
|
||||
pub fn new(pi: Point3fi, n: Normal3f, ns: Normal3f, time: Float) -> Self {
|
||||
Self { pi, n, ns, time }
|
||||
}
|
||||
|
||||
pub fn new_from_interaction(si: &SurfaceInteraction) -> Self {
|
||||
Self {
|
||||
pi: si.pi(),
|
||||
n: si.n(),
|
||||
ns: si.shading.n,
|
||||
time: si.time(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn p(&self) -> Point3f {
|
||||
Point3f::from(self.pi)
|
||||
}
|
||||
|
||||
pub fn offset_ray_origin(&self, w: Vector3f) -> Point3f {
|
||||
let d = self.n.abs().dot(self.pi.error().into());
|
||||
let mut offset = d * Vector3f::from(self.n);
|
||||
if w.dot(self.n.into()) < 0.0 {
|
||||
offset = -offset;
|
||||
}
|
||||
|
||||
let mut po = Point3f::from(self.pi) + offset;
|
||||
for i in 0..3 {
|
||||
if offset[i] > 0.0 {
|
||||
po[i] = next_float_up(po[i]);
|
||||
} else {
|
||||
po[i] = next_float_down(po[i]);
|
||||
}
|
||||
}
|
||||
po
|
||||
}
|
||||
|
||||
pub fn offset_ray_origin_from_point(&self, pt: Point3f) -> Point3f {
|
||||
self.offset_ray_origin(pt - self.p())
|
||||
}
|
||||
|
||||
pub fn spawn_ray(&self, w: Vector3f) -> Ray {
|
||||
Ray::new(
|
||||
self.offset_ray_origin(w),
|
||||
w,
|
||||
Some(self.time),
|
||||
core::ptr::null(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait ShapeTrait {
|
||||
fn bounds(&self) -> Bounds3f;
|
||||
fn normal_bounds(&self) -> DirectionCone;
|
||||
fn area(&self) -> Float;
|
||||
fn sample(&self, u: Point2f) -> Option<ShapeSample>;
|
||||
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample>;
|
||||
fn intersect(&self, ray: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection>;
|
||||
fn intersect_p(&self, ray: &Ray, t_max: Option<Float>) -> bool;
|
||||
fn pdf(&self, interaction: &Interaction) -> Float;
|
||||
fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float;
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
#[enum_dispatch(ShapeTrait)]
|
||||
pub enum Shape {
|
||||
Sphere(SphereShape),
|
||||
Cylinder(CylinderShape),
|
||||
Disk(DiskShape),
|
||||
Triangle(TriangleShape),
|
||||
BilinearPatch(BilinearPatchShape),
|
||||
Curve(CurveShape),
|
||||
}
|
||||
|
||||
impl Default for Shape {
|
||||
fn default() -> Self {
|
||||
Shape::Sphere(SphereShape::default())
|
||||
}
|
||||
}
|
||||
|
|
@ -2,13 +2,14 @@ use crate::core::color::ColorEncoding;
|
|||
use crate::core::geometry::{
|
||||
Normal3f, Point2f, Point3f, Vector2f, Vector3f, VectorLike, spherical_phi, spherical_theta,
|
||||
};
|
||||
use crate::core::image::WrapMode;
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
|
||||
use crate::images::WrapMode;
|
||||
use crate::spectra::{
|
||||
RGBAlbedoSpectrum, RGBIlluminantSpectrum, RGBUnboundedSpectrum, SampledSpectrum,
|
||||
SampledWavelengths,
|
||||
};
|
||||
use crate::textures::*;
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::math::square;
|
||||
use crate::{Float, INV_2_PI, INV_PI, PI};
|
||||
|
|
@ -258,7 +259,7 @@ impl PointTransformMapping {
|
|||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, Copy, Default, Debug)]
|
||||
pub struct TextureEvalContext {
|
||||
pub p: Point3f,
|
||||
pub dpdx: Vector3f,
|
||||
|
|
@ -269,7 +270,7 @@ pub struct TextureEvalContext {
|
|||
pub dudy: Float,
|
||||
pub dvdx: Float,
|
||||
pub dvdy: Float,
|
||||
pub face_index: usize,
|
||||
pub face_index: u32,
|
||||
}
|
||||
|
||||
impl TextureEvalContext {
|
||||
|
|
@ -284,7 +285,7 @@ impl TextureEvalContext {
|
|||
dudy: Float,
|
||||
dvdx: Float,
|
||||
dvdy: Float,
|
||||
face_index: usize,
|
||||
face_index: u32,
|
||||
) -> Self {
|
||||
Self {
|
||||
p,
|
||||
|
|
@ -308,7 +309,7 @@ impl From<&SurfaceInteraction> for TextureEvalContext {
|
|||
dpdx: si.dpdx,
|
||||
dpdy: si.dpdy,
|
||||
n: si.common.n,
|
||||
uv: si.uv,
|
||||
uv: si.common.uv,
|
||||
dudx: si.dudx,
|
||||
dudy: si.dudy,
|
||||
dvdx: si.dvdx,
|
||||
|
|
@ -363,7 +364,7 @@ impl GPUFloatTexture {
|
|||
GPUFloatTexture::Dots(t) => t.evaluate(ctx),
|
||||
GPUFloatTexture::FBm(t) => t.evaluate(ctx),
|
||||
GPUFloatTexture::Windy(t) => t.evaluate(ctx),
|
||||
GPUFloatTexture::Wrinkle(t) => t.evaluate(ctx),
|
||||
GPUFloatTexture::Wrinkled(t) => t.evaluate(ctx),
|
||||
GPUFloatTexture::Ptex(t) => t.evaluate(ctx),
|
||||
GPUFloatTexture::Image(t) => t.evaluate(ctx),
|
||||
GPUFloatTexture::Mix(t) => t.evaluate(ctx),
|
||||
|
|
@ -396,7 +397,11 @@ pub enum GPUSpectrumTexture {
|
|||
}
|
||||
|
||||
impl GPUSpectrumTexture {
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext, lambda: &SampledWavelengths) -> Float {
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
ctx: &TextureEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
match self {
|
||||
GPUSpectrumTexture::Constant(t) => t.evaluate(ctx, lambda),
|
||||
GPUSpectrumTexture::Bilerp(t) => t.evaluate(ctx, lambda),
|
||||
|
|
@ -421,7 +426,11 @@ pub trait TextureEvaluator: Send + Sync {
|
|||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum;
|
||||
|
||||
fn can_evaluate(&self, _ftex: &[&GPUFloatTexture], _stex: &[&GPUSpectrumTexture]) -> bool;
|
||||
fn can_evaluate(
|
||||
&self,
|
||||
_ftex: &[RelPtr<GPUFloatTexture>],
|
||||
_stex: &[RelPtr<GPUSpectrumTexture>],
|
||||
) -> bool;
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
|
|
@ -444,8 +453,8 @@ impl TextureEvaluator for UniversalTextureEvaluator {
|
|||
|
||||
fn can_evaluate(
|
||||
&self,
|
||||
_float_textures: &[&GPUFloatTexture],
|
||||
_spectrum_textures: &[&GPUSpectrumTexture],
|
||||
_float_textures: &[RelPtr<GPUFloatTexture>],
|
||||
_spectrum_textures: &[RelPtr<GPUSpectrumTexture>],
|
||||
) -> bool {
|
||||
true
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,55 +2,39 @@ use crate::Float;
|
|||
use bytemuck::cast_slice;
|
||||
use once_cell::sync::Lazy;
|
||||
|
||||
static SRGB_SCALE_BYTES: &[u8] = include_bytes!("../../data/srgb_scale.dat");
|
||||
static SRGB_COEFFS_BYTES: &[u8] = include_bytes!("../../data/srgb_coeffs.dat");
|
||||
#[repr(C, align(16))]
|
||||
struct AlignedData<const N: usize>(pub [u8; N]);
|
||||
|
||||
pub static SRGB_SCALE: Lazy<&[Float]> = Lazy::new(|| cast_slice(SRGB_SCALE_BYTES));
|
||||
macro_rules! load_static_table {
|
||||
($name:ident, $path:literal) => {
|
||||
pub static $name: &[Float] = {
|
||||
static RAW_DATA: AlignedData<{ include_bytes!($path).len() }> =
|
||||
AlignedData(*include_bytes!($path));
|
||||
|
||||
pub static SRGB_COEFFS: Lazy<&[Float]> =
|
||||
Lazy::new(|| match bytemuck::try_cast_slice(SRGB_COEFFS_BYTES) {
|
||||
Ok(s) => s,
|
||||
Err(_) => {
|
||||
let v: Vec<Float> = bytemuck::pod_collect_to_vec(SRGB_COEFFS_BYTES);
|
||||
Box::leak(v.into_boxed_slice())
|
||||
}
|
||||
});
|
||||
unsafe {
|
||||
let bytes = &RAW_DATA.0;
|
||||
|
||||
static DCI_P3_SCALE_BYTES: &[u8] = include_bytes!("../../data/dcip3_scale.dat");
|
||||
static DCI_P3_COEFFS_BYTES: &[u8] = include_bytes!("../../data/dcip3_coeffs.dat");
|
||||
pub static DCI_P3_SCALE: Lazy<&[Float]> = Lazy::new(|| cast_slice(DCI_P3_SCALE_BYTES));
|
||||
pub static DCI_P3_COEFFS: Lazy<&[Float]> =
|
||||
Lazy::new(|| match bytemuck::try_cast_slice(DCI_P3_COEFFS_BYTES) {
|
||||
Ok(s) => s,
|
||||
Err(_) => {
|
||||
let v: Vec<Float> = bytemuck::pod_collect_to_vec(DCI_P3_COEFFS_BYTES);
|
||||
Box::leak(v.into_boxed_slice())
|
||||
}
|
||||
});
|
||||
let stride = core::mem::size_of::<Float>();
|
||||
let len = bytes.len() / stride;
|
||||
debug_assert!(
|
||||
bytes.len() % stride == 0,
|
||||
"Data file size is not a multiple of Float size"
|
||||
);
|
||||
|
||||
static ACES_SCALE_BYTES: &[u8] = include_bytes!("../../data/aces_scale.dat");
|
||||
static ACES_COEFFS_BYTES: &[u8] = include_bytes!("../../data/aces_coeffs.dat");
|
||||
core::slice::from_raw_parts(bytes.as_ptr() as *const Float, len)
|
||||
}
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
pub static ACES_SCALE: Lazy<&[Float]> = Lazy::new(|| cast_slice(ACES_SCALE_BYTES));
|
||||
load_static_table!(SRGB_SCALE, "../../data/srgb_scale.dat");
|
||||
load_static_table!(SRGB_COEFFS, "../../data/srgb_coeffs.dat");
|
||||
|
||||
pub static ACES_COEFFS: Lazy<&[Float]> =
|
||||
Lazy::new(|| match bytemuck::try_cast_slice(ACES_COEFFS_BYTES) {
|
||||
Ok(s) => s,
|
||||
Err(_) => {
|
||||
let v: Vec<Float> = bytemuck::pod_collect_to_vec(ACES_COEFFS_BYTES);
|
||||
Box::leak(v.into_boxed_slice())
|
||||
}
|
||||
});
|
||||
load_static_table!(DCI_P3_SCALE, "../../data/dcip3_scale.dat");
|
||||
load_static_table!(DCI_P3_COEFFS, "../../data/dcip3_coeffs.dat");
|
||||
|
||||
static REC2020_SCALE_BYTES: &[u8] = include_bytes!("../../data/rec2020_scale.dat");
|
||||
static REC2020_COEFFS_BYTES: &[u8] = include_bytes!("../../data/rec2020_coeffs.dat");
|
||||
load_static_table!(ACES_SCALE, "../../data/aces_scale.dat");
|
||||
load_static_table!(ACES_COEFFS, "../../data/aces_coeffs.dat");
|
||||
|
||||
pub static REC2020_SCALE: Lazy<&[Float]> = Lazy::new(|| cast_slice(REC2020_SCALE_BYTES));
|
||||
pub static REC2020_COEFFS: Lazy<&[Float]> =
|
||||
Lazy::new(|| match bytemuck::try_cast_slice(REC2020_COEFFS_BYTES) {
|
||||
Ok(s) => s,
|
||||
Err(_) => {
|
||||
let v: Vec<Float> = bytemuck::pod_collect_to_vec(REC2020_COEFFS_BYTES);
|
||||
Box::leak(v.into_boxed_slice())
|
||||
}
|
||||
});
|
||||
load_static_table!(REC2020_SCALE, "../../data/rec2020_scale.dat");
|
||||
load_static_table!(REC2020_COEFFS, "../../data/rec2020_coeffs.dat");
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
use crate::Float;
|
||||
use crate::core::filter::FilterSample;
|
||||
use crate::core::geometry::{Point2f, Vector2f};
|
||||
use crate::utils::math::lerp;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct BoxFilter {
|
||||
|
|
|
|||
|
|
@ -1,4 +1,10 @@
|
|||
#[derive(Clone, Debug)]
|
||||
use crate::Float;
|
||||
use crate::core::filter::{FilterSample, FilterSampler};
|
||||
use crate::core::geometry::{Point2f, Vector2f};
|
||||
use crate::utils::math::{gaussian, gaussian_integral};
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct GaussianFilter {
|
||||
pub radius: Vector2f,
|
||||
pub sigma: Float,
|
||||
|
|
|
|||
|
|
@ -1,4 +1,11 @@
|
|||
#[derive(Clone, Debug)]
|
||||
use crate::Float;
|
||||
use crate::core::filter::{FilterSample, FilterSampler};
|
||||
use crate::core::geometry::{Point2f, Vector2f};
|
||||
use crate::utils::math::{lerp, windowed_sinc};
|
||||
use rand::Rng;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct LanczosSincFilter {
|
||||
pub radius: Vector2f,
|
||||
pub tau: Float,
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
use crate::Float;
|
||||
use crate::core::filter::FilterSampler;
|
||||
use crate::core::filter::{FilterSample, FilterSampler};
|
||||
use crate::core::geometry::{Point2f, Vector2f};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
|
|
|
|||
|
|
@ -1,4 +1,10 @@
|
|||
#[derive(Clone, Debug)]
|
||||
use crate::Float;
|
||||
use crate::core::filter::FilterSample;
|
||||
use crate::core::geometry::{Point2f, Vector2f};
|
||||
use crate::utils::math::sample_tent;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct TriangleFilter {
|
||||
pub radius: Vector2f,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,118 +0,0 @@
|
|||
use crate::core::geometry::{Bounds2i, Point2i};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::spectra::colorspace::RGBColorSpace;
|
||||
use crate::utils::math::SquareMatrix;
|
||||
use smallvec::SmallVec;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use std::ops::{Deref, DerefMut};
|
||||
|
||||
#[derive(Clone, Debug, Default)]
|
||||
pub struct ImageChannelValues(pub SmallVec<[Float; 4]>);
|
||||
|
||||
impl ImageChannelValues {
|
||||
pub fn average(&self) -> Float {
|
||||
if self.0.is_empty() {
|
||||
return 0.0;
|
||||
}
|
||||
let sum: Float = self.0.iter().sum();
|
||||
sum / (self.0.len() as Float)
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> Float {
|
||||
self.0.iter().fold(Float::MIN, |a, &b| a.max(b))
|
||||
}
|
||||
}
|
||||
|
||||
impl From<&[Float]> for ImageChannelValues {
|
||||
fn from(slice: &[Float]) -> Self {
|
||||
Self(SmallVec::from_slice(slice))
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Vec<Float>> for ImageChannelValues {
|
||||
fn from(vec: Vec<Float>) -> Self {
|
||||
Self(SmallVec::from_vec(vec))
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> From<[Float; N]> for ImageChannelValues {
|
||||
fn from(arr: [Float; N]) -> Self {
|
||||
Self(SmallVec::from_slice(&arr))
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for ImageChannelValues {
|
||||
type Target = SmallVec<[Float; 4]>;
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl DerefMut for ImageChannelValues {
|
||||
fn deref_mut(&mut self) -> &mut Self::Target {
|
||||
&mut self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum WrapMode {
|
||||
Black,
|
||||
Clamp,
|
||||
Repeat,
|
||||
OctahedralSphere,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub struct WrapMode2D {
|
||||
pub uv: [WrapMode; 2],
|
||||
}
|
||||
|
||||
impl From<WrapMode> for WrapMode2D {
|
||||
fn from(w: WrapMode) -> Self {
|
||||
Self { uv: [w, w] }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct ImageChannelDesc {
|
||||
pub offset: Vec<usize>,
|
||||
}
|
||||
|
||||
impl ImageChannelDesc {
|
||||
pub fn new(offset: &[usize]) -> Self {
|
||||
Self {
|
||||
offset: offset.into(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn size(&self) -> usize {
|
||||
self.offset.len()
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.offset.is_empty()
|
||||
}
|
||||
pub fn is_identity(&self) -> bool {
|
||||
for i in 0..self.size() {
|
||||
if self.offset[i] != i {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
pub struct ImageMetadata {
|
||||
pub render_time_seconds: Option<Float>,
|
||||
pub camera_from_world: Option<SquareMatrix<Float, 4>>,
|
||||
pub ndc_from_world: Option<SquareMatrix<Float, 4>>,
|
||||
pub pixel_bounds: Option<Bounds2i>,
|
||||
pub full_resolution: Option<Point2i>,
|
||||
pub samples_per_pixel: Option<i32>,
|
||||
pub mse: Option<Float>,
|
||||
pub colorspace: Option<RGBColorSpace>,
|
||||
pub strings: HashMap<String, String>,
|
||||
pub string_vectors: HashMap<String, Vec<String>>,
|
||||
}
|
||||
|
|
@ -1,443 +0,0 @@
|
|||
pub mod metadata;
|
||||
pub mod ops;
|
||||
pub mod pixel;
|
||||
|
||||
use crate::core::geometry::{Bounds2f, Point2f, Point2fi, Point2i};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::spectra::color::{ColorEncoding, ColorEncodingTrait, LINEAR};
|
||||
use crate::utils::containers::Array2D;
|
||||
use crate::utils::math::{lerp, square};
|
||||
use core::hash;
|
||||
use half::f16;
|
||||
use pixel::PixelStorage;
|
||||
use rayon::prelude::*;
|
||||
use smallvec::{SmallVec, smallvec};
|
||||
use std::ops::{Deref, DerefMut};
|
||||
|
||||
pub use metadata::{ImageChannelDesc, ImageChannelValues, ImageMetadata, WrapMode, WrapMode2D};
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub enum PixelFormat {
|
||||
U8,
|
||||
F16,
|
||||
F32,
|
||||
}
|
||||
|
||||
impl PixelFormat {
|
||||
pub fn is_8bit(&self) -> bool {
|
||||
matches!(self, PixelFormat::U8)
|
||||
}
|
||||
|
||||
pub fn is_16bit(&self) -> bool {
|
||||
matches!(self, PixelFormat::F16)
|
||||
}
|
||||
|
||||
pub fn is_32bit(&self) -> bool {
|
||||
matches!(self, PixelFormat::F32)
|
||||
}
|
||||
|
||||
pub fn texel_bytes(&self) -> usize {
|
||||
match self {
|
||||
PixelFormat::U8 => 1,
|
||||
PixelFormat::F16 => 2,
|
||||
PixelFormat::F32 => 4,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for PixelFormat {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match self {
|
||||
PixelFormat::U8 => write!(f, "U256"),
|
||||
PixelFormat::F16 => write!(f, "Half"),
|
||||
PixelFormat::F32 => write!(f, "Float"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum PixelData {
|
||||
U8(Vec<u8>),
|
||||
F16(Vec<f16>),
|
||||
F32(Vec<f32>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Image {
|
||||
pub format: PixelFormat,
|
||||
pub resolution: Point2i,
|
||||
pub channel_names: Vec<String>,
|
||||
pub encoding: ColorEncoding,
|
||||
pub pixels: PixelData,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct ImageAndMetadata {
|
||||
pub image: Image,
|
||||
pub metadata: ImageMetadata,
|
||||
}
|
||||
|
||||
impl Image {
|
||||
fn from_vector(
|
||||
format: PixelFormat,
|
||||
resolution: Point2i,
|
||||
channel_names: Vec<String>,
|
||||
encoding: ColorEncoding,
|
||||
) -> Self {
|
||||
let size = (resolution.x() * resolution.y()) as usize * channel_names.len();
|
||||
|
||||
let pixels = match format {
|
||||
PixelFormat::U8 => PixelData::U8(vec![0; size]),
|
||||
PixelFormat::F16 => PixelData::F16(vec![f16::ZERO; size]),
|
||||
PixelFormat::F32 => PixelData::F32(vec![0.0; size]),
|
||||
};
|
||||
|
||||
Self {
|
||||
format,
|
||||
resolution,
|
||||
channel_names,
|
||||
encoding,
|
||||
pixels,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new(
|
||||
format: PixelFormat,
|
||||
resolution: Point2i,
|
||||
channel_names: &[&str],
|
||||
encoding: ColorEncoding,
|
||||
) -> Self {
|
||||
let owned_names = channel_names.iter().map(|s| s.to_string()).collect();
|
||||
Self::from_vector(format, resolution, owned_names, encoding)
|
||||
}
|
||||
|
||||
pub fn format(&self) -> PixelFormat {
|
||||
self.format
|
||||
}
|
||||
pub fn resolution(&self) -> Point2i {
|
||||
self.resolution
|
||||
}
|
||||
pub fn n_channels(&self) -> usize {
|
||||
self.channel_names.len()
|
||||
}
|
||||
pub fn channel_names(&self) -> Vec<&str> {
|
||||
self.channel_names.iter().map(|s| s.as_str()).collect()
|
||||
}
|
||||
pub fn channel_names_from_desc(&self, desc: &ImageChannelDesc) -> Vec<&str> {
|
||||
desc.offset
|
||||
.iter()
|
||||
.map(|&i| self.channel_names[i].as_str())
|
||||
.collect()
|
||||
}
|
||||
pub fn encoding(&self) -> ColorEncoding {
|
||||
self.encoding
|
||||
}
|
||||
|
||||
pub fn pixel_offset(&self, p: Point2i) -> usize {
|
||||
(p.y() as usize * self.resolution.x() as usize + p.x() as usize) * self.n_channels()
|
||||
}
|
||||
|
||||
pub fn get_channel(&self, p: Point2i, c: usize) -> Float {
|
||||
self.get_channel_with_wrap(p, c, WrapMode::Clamp.into())
|
||||
}
|
||||
|
||||
pub fn get_channel_with_wrap(&self, p: Point2i, c: usize, wrap: WrapMode2D) -> Float {
|
||||
let mut pp = p;
|
||||
if !self.remap_pixel_coords(&mut pp, wrap) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let idx = self.pixel_offset(pp) + c;
|
||||
match &self.pixels {
|
||||
PixelData::U8(d) => u8::to_linear(d[idx], self.encoding),
|
||||
PixelData::F16(d) => f16::to_linear(d[idx], self.encoding),
|
||||
PixelData::F32(d) => f32::to_linear(d[idx], self.encoding),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_channels(&self, p: Point2i, wrap: WrapMode2D) -> ImageChannelValues {
|
||||
let mut pp = p;
|
||||
|
||||
if !self.remap_pixel_coords(&mut pp, wrap) {
|
||||
return ImageChannelValues(smallvec![0.0; self.n_channels()]);
|
||||
}
|
||||
|
||||
let start_idx = self.pixel_offset(pp);
|
||||
let n_channels = self.n_channels();
|
||||
|
||||
let mut values: SmallVec<[Float; 4]> = SmallVec::with_capacity(n_channels);
|
||||
|
||||
match &self.pixels {
|
||||
PixelData::U8(data) => {
|
||||
let slice = &data[start_idx..start_idx + n_channels];
|
||||
for &v in slice {
|
||||
values.push(u8::to_linear(v, self.encoding));
|
||||
}
|
||||
}
|
||||
PixelData::F16(data) => {
|
||||
let slice = &data[start_idx..start_idx + n_channels];
|
||||
for &v in slice {
|
||||
values.push(f16::to_linear(v, self.encoding));
|
||||
}
|
||||
}
|
||||
PixelData::F32(data) => {
|
||||
let slice = &data[start_idx..start_idx + n_channels];
|
||||
for &v in slice {
|
||||
values.push(f32::to_linear(v, self.encoding));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImageChannelValues(values)
|
||||
}
|
||||
|
||||
pub fn get_channels_desc(
|
||||
&self,
|
||||
p: Point2i,
|
||||
desc: &ImageChannelDesc,
|
||||
wrap: WrapMode2D,
|
||||
) -> ImageChannelValues {
|
||||
let mut pp = p;
|
||||
if !self.remap_pixel_coords(&mut pp, wrap) {
|
||||
return ImageChannelValues(smallvec![0.0; desc.offset.len()]);
|
||||
}
|
||||
|
||||
let pixel_offset = self.pixel_offset(pp);
|
||||
|
||||
let mut values: SmallVec<[Float; 4]> = SmallVec::with_capacity(desc.offset.len());
|
||||
|
||||
match &self.pixels {
|
||||
PixelData::U8(data) => {
|
||||
for &channel_idx in &desc.offset {
|
||||
let val = data[pixel_offset + channel_idx];
|
||||
values.push(u8::to_linear(val, self.encoding));
|
||||
}
|
||||
}
|
||||
PixelData::F16(data) => {
|
||||
for &channel_idx in &desc.offset {
|
||||
let val = data[pixel_offset + channel_idx];
|
||||
values.push(f16::to_linear(val, self.encoding));
|
||||
}
|
||||
}
|
||||
PixelData::F32(data) => {
|
||||
for &channel_idx in &desc.offset {
|
||||
let val = data[pixel_offset + channel_idx];
|
||||
values.push(f32::to_linear(val, self.encoding));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImageChannelValues(values)
|
||||
}
|
||||
|
||||
pub fn get_channels_default(&self, p: Point2i) -> ImageChannelValues {
|
||||
self.get_channels(p, WrapMode::Clamp.into())
|
||||
}
|
||||
|
||||
pub fn all_channels_desc(&self) -> ImageChannelDesc {
|
||||
ImageChannelDesc {
|
||||
offset: (0..self.n_channels()).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_channel_desc(
|
||||
&self,
|
||||
requested_channels: &[&str],
|
||||
) -> Result<ImageChannelDesc, String> {
|
||||
let mut offset = Vec::with_capacity(requested_channels.len());
|
||||
|
||||
for &req in requested_channels.iter() {
|
||||
match self.channel_names.iter().position(|n| n == req) {
|
||||
Some(idx) => {
|
||||
offset.push(idx);
|
||||
}
|
||||
None => {
|
||||
return Err(format!(
|
||||
"Image is missing requested channel '{}'. Available channels: {:?}",
|
||||
req, self.channel_names
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(ImageChannelDesc { offset })
|
||||
}
|
||||
|
||||
pub fn set_channel(&mut self, p: Point2i, c: usize, value: Float) {
|
||||
let val_no_nan = if value.is_nan() { 0.0 } else { value };
|
||||
let offset = self.pixel_offset(p) + c;
|
||||
match &mut self.pixels {
|
||||
PixelData::U8(data) => {
|
||||
let linear = [val_no_nan];
|
||||
self.encoding
|
||||
.from_linear_slice(&linear, &mut data[offset..offset + 1]);
|
||||
}
|
||||
PixelData::F16(data) => data[offset] = f16::from_f32(val_no_nan),
|
||||
PixelData::F32(data) => data[offset] = val_no_nan,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_channels(
|
||||
&mut self,
|
||||
p: Point2i,
|
||||
desc: &ImageChannelDesc,
|
||||
values: &ImageChannelValues,
|
||||
) {
|
||||
assert_eq!(desc.size(), values.len());
|
||||
for i in 0..desc.size() {
|
||||
self.set_channel(p, desc.offset[i], values[i]);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_channels_all(&mut self, p: Point2i, values: &ImageChannelValues) {
|
||||
self.set_channels(p, &self.all_channels_desc(), values)
|
||||
}
|
||||
|
||||
fn remap_pixel_coords(&self, p: &mut Point2i, wrap_mode: WrapMode2D) -> bool {
|
||||
for i in 0..2 {
|
||||
if p[i] >= 0 && p[i] < self.resolution[i] {
|
||||
continue;
|
||||
}
|
||||
match wrap_mode.uv[i] {
|
||||
WrapMode::Black => return false,
|
||||
WrapMode::Clamp => p[i] = p[i].clamp(0, self.resolution[i] - 1),
|
||||
WrapMode::Repeat => p[i] = p[i].rem_euclid(self.resolution[i]),
|
||||
WrapMode::OctahedralSphere => {
|
||||
p[i] = p[i].clamp(0, self.resolution[i] - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
|
||||
pub fn bilerp_channel(&self, p: Point2f, c: usize) -> Float {
|
||||
self.bilerp_channel_with_wrap(p, c, WrapMode::Clamp.into())
|
||||
}
|
||||
|
||||
pub fn bilerp_channel_with_wrap(&self, p: Point2f, c: usize, wrap_mode: WrapMode2D) -> Float {
|
||||
let x = p.x() * self.resolution.x() as Float - 0.5;
|
||||
let y = p.y() * self.resolution.y() as Float - 0.5;
|
||||
let xi = x.floor() as i32;
|
||||
let yi = y.floor() as i32;
|
||||
let dx = x - xi as Float;
|
||||
let dy = y - yi as Float;
|
||||
let v00 = self.get_channel_with_wrap(Point2i::new(xi, yi), c, wrap_mode);
|
||||
let v10 = self.get_channel_with_wrap(Point2i::new(xi + 1, yi), c, wrap_mode);
|
||||
let v01 = self.get_channel_with_wrap(Point2i::new(xi, yi + 1), c, wrap_mode);
|
||||
let v11 = self.get_channel_with_wrap(Point2i::new(xi + 1, yi + 1), c, wrap_mode);
|
||||
lerp(dy, lerp(dx, v00, v10), lerp(dx, v01, v11))
|
||||
}
|
||||
|
||||
pub fn lookup_nearest_channel_with_wrap(
|
||||
&self,
|
||||
p: Point2f,
|
||||
c: usize,
|
||||
wrap_mode: WrapMode2D,
|
||||
) -> Float {
|
||||
let pi = Point2i::new(
|
||||
p.x() as i32 * self.resolution.x(),
|
||||
p.y() as i32 * self.resolution.y(),
|
||||
);
|
||||
|
||||
self.get_channel_with_wrap(pi, c, wrap_mode)
|
||||
}
|
||||
|
||||
pub fn lookup_nearest_channel(&self, p: Point2f, c: usize) -> Float {
|
||||
self.lookup_nearest_channel_with_wrap(p, c, WrapMode::Clamp.into())
|
||||
}
|
||||
|
||||
pub fn get_sampling_distribution<F>(&self, dxd_a: F, domain: Bounds2f) -> Array2D<Float>
|
||||
where
|
||||
F: Fn(Point2f) -> Float + Sync + Send,
|
||||
{
|
||||
let width = self.resolution.x();
|
||||
let height = self.resolution.y();
|
||||
|
||||
let mut dist = Array2D::new_with_dims(width as usize, height as usize);
|
||||
|
||||
dist.values
|
||||
.par_chunks_mut(width as usize)
|
||||
.enumerate()
|
||||
.for_each(|(y, row)| {
|
||||
let y = y as i32;
|
||||
|
||||
for (x, out_val) in row.iter_mut().enumerate() {
|
||||
let x = x as i32;
|
||||
|
||||
let value = self.get_channels_default(Point2i::new(x, y)).average();
|
||||
|
||||
let u = (x as Float + 0.5) / width as Float;
|
||||
let v = (y as Float + 0.5) / height as Float;
|
||||
let p = domain.lerp(Point2f::new(u, v));
|
||||
*out_val = value * dxd_a(p);
|
||||
}
|
||||
});
|
||||
|
||||
dist
|
||||
}
|
||||
|
||||
pub fn get_sampling_distribution_uniform(&self) -> Array2D<Float> {
|
||||
let default_domain = Bounds2f::from_points(Point2f::new(0.0, 0.0), Point2f::new(1.0, 1.0));
|
||||
|
||||
self.get_sampling_distribution(|_| 1.0, default_domain)
|
||||
}
|
||||
|
||||
pub fn mse(
|
||||
&self,
|
||||
desc: ImageChannelDesc,
|
||||
ref_img: &Image,
|
||||
generate_mse_image: bool,
|
||||
) -> (ImageChannelValues, Option<Image>) {
|
||||
let mut sum_se: Vec<f64> = vec![0.; desc.size()];
|
||||
let names_ref = self.channel_names_from_desc(&desc);
|
||||
let ref_desc = ref_img
|
||||
.get_channel_desc(&self.channel_names_from_desc(&desc))
|
||||
.expect("Channels not found in image");
|
||||
assert_eq!(self.resolution(), ref_img.resolution());
|
||||
|
||||
let width = self.resolution.x() as usize;
|
||||
let height = self.resolution.y() as usize;
|
||||
let n_channels = desc.offset.len();
|
||||
let mut mse_pixels = if generate_mse_image {
|
||||
vec![0.0f32; width * height * n_channels]
|
||||
} else {
|
||||
Vec::new()
|
||||
};
|
||||
|
||||
for y in 0..self.resolution().y() {
|
||||
for x in 0..self.resolution().x() {
|
||||
let v = self.get_channels_desc(Point2i::new(x, y), &desc, WrapMode::Clamp.into());
|
||||
let v_ref =
|
||||
self.get_channels_desc(Point2i::new(x, y), &ref_desc, WrapMode::Clamp.into());
|
||||
for c in 0..desc.size() {
|
||||
let se = square(v[c] as f64 - v_ref[c] as f64);
|
||||
if se.is_infinite() {
|
||||
continue;
|
||||
}
|
||||
sum_se[c] += se;
|
||||
if generate_mse_image {
|
||||
let idx = (y as usize * width + x as usize) * n_channels + c;
|
||||
mse_pixels[idx] = se as f32;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let pixel_count = (self.resolution.x() * self.resolution.y()) as f64;
|
||||
let mse_values: SmallVec<[Float; 4]> =
|
||||
sum_se.iter().map(|&s| (s / pixel_count) as Float).collect();
|
||||
|
||||
let mse_image = if generate_mse_image {
|
||||
Some(Image::new(
|
||||
PixelFormat::F32,
|
||||
self.resolution,
|
||||
&names_ref,
|
||||
LINEAR,
|
||||
))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
(ImageChannelValues(mse_values), mse_image)
|
||||
}
|
||||
}
|
||||
|
|
@ -2,16 +2,15 @@
|
|||
#![feature(float_erf)]
|
||||
#![feature(f16)]
|
||||
|
||||
mod cameras;
|
||||
mod core;
|
||||
mod data;
|
||||
mod filters;
|
||||
mod images;
|
||||
mod integrators;
|
||||
mod lights;
|
||||
mod shapes;
|
||||
mod spectra;
|
||||
mod textures;
|
||||
mod utils;
|
||||
pub mod cameras;
|
||||
pub mod core;
|
||||
pub mod data;
|
||||
pub mod filters;
|
||||
pub mod lights;
|
||||
pub mod materials;
|
||||
pub mod shapes;
|
||||
pub mod spectra;
|
||||
pub mod textures;
|
||||
pub mod utils;
|
||||
|
||||
pub use core::pbrt::*;
|
||||
|
|
|
|||
|
|
@ -1,106 +1,48 @@
|
|||
use crate::PI;
|
||||
use crate::core::color::{RGB, XYZ};
|
||||
use crate::core::geometry::*;
|
||||
use crate::core::interaction::{Interaction, MediumInteraction, SurfaceInteraction};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::interaction::{
|
||||
Interaction, InteractionTrait, MediumInteraction, SurfaceInteraction,
|
||||
};
|
||||
use crate::core::light::{
|
||||
LightBase, LightBounds, LightLiSample, LightSampleContext, LightTrait, LightType,
|
||||
};
|
||||
use crate::core::medium::MediumInterface;
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::core::shape::{Shape, ShapeSampleContext, ShapeTrait};
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, TextureEvalContext, UniversalTextureEvaluator};
|
||||
use crate::images::Image;
|
||||
use crate::shapes::{Shape, ShapeSampleContext};
|
||||
use crate::core::texture::{
|
||||
GPUFloatTexture, TextureEvalContext, TextureEvaluator, UniversalTextureEvaluator,
|
||||
};
|
||||
use crate::spectra::*;
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::hash::hash_float;
|
||||
use crate::utils::{Ptr, Transform};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct DiffuseAreaLight {
|
||||
pub base: LightBase,
|
||||
pub shape: *const Shape,
|
||||
pub alpha: *const GPUFloatTexture,
|
||||
pub shape: Ptr<Shape>,
|
||||
pub alpha: Ptr<GPUFloatTexture>,
|
||||
pub image_color_space: Ptr<RGBColorSpace>,
|
||||
pub lemit: Ptr<DenselySampledSpectrum>,
|
||||
pub image: Ptr<Image>,
|
||||
pub area: Float,
|
||||
pub two_sided: bool,
|
||||
pub lemit: DenselySampledSpectrum,
|
||||
pub scale: Float,
|
||||
pub image: *const Image,
|
||||
pub image_color_space: RGBColorSpace,
|
||||
}
|
||||
|
||||
unsafe impl Send for DiffuseAreaLight {}
|
||||
unsafe impl Sync for DiffuseAreaLight {}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl DiffuseAreaLight {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
render_from_light: Transform,
|
||||
medium_interface: MediumInterface,
|
||||
le: Spectrum,
|
||||
scale: Float,
|
||||
shape: Shape,
|
||||
alpha: *const GPUFloatTexture,
|
||||
image: *const Image,
|
||||
image_color_space: *const RGBColorSpace,
|
||||
two_sided: bool,
|
||||
) -> Self {
|
||||
let is_constant_zero = match &alpha {
|
||||
GPUFloatTexture::Constant(tex) => tex.evaluate(&TextureEvalContext::default()) == 0.0,
|
||||
_ => false,
|
||||
};
|
||||
|
||||
let (light_type, stored_alpha) = if is_constant_zero {
|
||||
(LightType::DeltaPosition, None)
|
||||
} else {
|
||||
(LightType::Area, Some(alpha))
|
||||
};
|
||||
|
||||
let base = LightBase::new(light_type, &render_from_light, &medium_interface);
|
||||
|
||||
let lemit = LightBase::lookup_spectrum(&le);
|
||||
if let Some(im) = &image {
|
||||
let desc = im
|
||||
.get_channel_desc(&["R", "G", "B"])
|
||||
.expect("Image used for DiffuseAreaLight doesn't have R, G, B channels");
|
||||
|
||||
assert_eq!(3, desc.size(), "Image channel description size mismatch");
|
||||
assert!(
|
||||
desc.is_identity(),
|
||||
"Image channel description is not identity"
|
||||
);
|
||||
|
||||
assert!(
|
||||
image_color_space.is_some(),
|
||||
"Image provided but ColorSpace is missing"
|
||||
);
|
||||
}
|
||||
let is_triangle_or_bilinear = matches!(shape, Shape::Triangle(_) | Shape::BilinearPatch(_));
|
||||
if render_from_light.has_scale(None) && !is_triangle_or_bilinear {
|
||||
println!(
|
||||
"Scaling detected in rendering to light space transformation! \
|
||||
The system has numerous assumptions, implicit and explicit, \
|
||||
that this transform will have no scale factors in it. \
|
||||
Proceed at your own risk; your image may have errors."
|
||||
);
|
||||
}
|
||||
|
||||
Self {
|
||||
base,
|
||||
area: shape.area(),
|
||||
shape,
|
||||
alpha: stored_alpha,
|
||||
two_sided,
|
||||
lemit,
|
||||
scale,
|
||||
image,
|
||||
image_color_space,
|
||||
}
|
||||
}
|
||||
|
||||
fn l_base(&self, n: Normal3f, wo: Vector3f, lambda: &SampledWavelengths) -> SampledSpectrum {
|
||||
if !self.two_sided && n.dot(wo) <= 0.0 {
|
||||
if !self.two_sided && n.dot(wo.into()) <= 0.0 {
|
||||
return SampledSpectrum::new(0.0);
|
||||
}
|
||||
let spec = DenselySampledSpectrum::from_array(&self.lemit_coeffs);
|
||||
spec.sample(lambda) * self.scale
|
||||
self.lemit.sample(lambda) * self.scale
|
||||
}
|
||||
|
||||
fn alpha_masked(&self, intr: &Interaction) -> bool {
|
||||
|
|
@ -133,9 +75,9 @@ impl LightTrait for DiffuseAreaLight {
|
|||
) -> Option<LightLiSample> {
|
||||
let shape_ctx = ShapeSampleContext::new(ctx.pi, ctx.n, ctx.ns, 0.0);
|
||||
let ss = self.shape.sample_from_context(&shape_ctx, u)?;
|
||||
let mut intr: SurfaceInteraction = ss.intr.as_ref().clone();
|
||||
let mut intr: SurfaceInteraction = ss.intr;
|
||||
|
||||
intr.common.medium_interface = Some(self.base.medium_interface.clone());
|
||||
intr.common.medium_interface = self.base.medium_interface;
|
||||
let p = intr.p();
|
||||
let n = intr.n();
|
||||
let uv = intr.uv;
|
||||
|
|
@ -234,7 +176,7 @@ impl LightTrait for DiffuseAreaLight {
|
|||
#[cfg(not(target_os = "cuda"))]
|
||||
fn bounds(&self) -> Option<LightBounds> {
|
||||
let mut phi = 0.;
|
||||
if let Some(image) = &self.image {
|
||||
if !self.image.is_null() {
|
||||
for y in 0..image.resolution.y() {
|
||||
for x in 0..image.resolution.x() {
|
||||
for c in 0..3 {
|
||||
|
|
|
|||
|
|
@ -1,14 +1,17 @@
|
|||
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector3f};
|
||||
use crate::core::interaction::{Interaction, InteractionData};
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector3f, VectorLike,
|
||||
};
|
||||
use crate::core::interaction::{Interaction, InteractionBase, SimpleInteraction};
|
||||
use crate::core::light::{LightBase, LightBounds, LightLiSample, LightSampleContext, LightTrait};
|
||||
use crate::spectra::{DenselySampledSpectrum, SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::Ptr;
|
||||
use crate::{Float, PI};
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct DistantLight {
|
||||
pub base: LightBase,
|
||||
pub lemit_coeffs: [Float; 32],
|
||||
pub lemit: Ptr<DenselySampledSpectrum>,
|
||||
pub scale: Float,
|
||||
pub scene_center: Point3f,
|
||||
pub scene_radius: Float,
|
||||
|
|
@ -26,8 +29,7 @@ impl DistantLight {
|
|||
.apply_to_vector(Vector3f::new(0., 0., 1.))
|
||||
.normalize();
|
||||
let p_outside = ctx_p + wi * 2. * self.scene_radius;
|
||||
let spectrum = DenselySampledSpectrum::from_array(&self.lemit_coeffs);
|
||||
let li = self.scale * spectrum.sample(lambda);
|
||||
let li = self.scale * self.lemit.sample(lambda);
|
||||
(li, wi, 1.0, p_outside)
|
||||
}
|
||||
}
|
||||
|
|
@ -59,10 +61,10 @@ impl LightTrait for DistantLight {
|
|||
let intr = SimpleInteraction::new(
|
||||
Point3fi::new_from_point(p_outside),
|
||||
0.0,
|
||||
Some(self.base.medium_interface.clone()),
|
||||
self.base.medium_interface,
|
||||
);
|
||||
|
||||
Some(LightLiSample::new(li, wi, 1., Interaction::Simple(intr)))
|
||||
Some(LightLiSample::new(li, wi, 1., intr))
|
||||
}
|
||||
|
||||
fn pdf_li(
|
||||
|
|
|
|||
|
|
@ -1,21 +1,27 @@
|
|||
use crate::Float;
|
||||
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point3f, Vector3f};
|
||||
use crate::core::light::{LightBase, LightBounds, LightLiSample, LightTrait};
|
||||
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point2i, Point3f, Ray, Vector3f};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::light::{
|
||||
LightBase, LightBounds, LightLiSample, LightSampleContext, LightTrait, LightType,
|
||||
};
|
||||
use crate::core::medium::MediumInterface;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::core::spectrum::Spectrum;
|
||||
use crate::spectra::{DenselySampledSpectrum, SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::math::equal_area_sphere_to_square;
|
||||
use crate::utils::sampling::PiecewiseConstant2D;
|
||||
use crate::{Float, PI};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct GoniometricLight {
|
||||
pub base: LightBase,
|
||||
iemit: DenselySampledSpectrum,
|
||||
scale: Float,
|
||||
image: Image,
|
||||
distrib: PiecewiseConstant2D,
|
||||
image: *const Image,
|
||||
distrib: *const PiecewiseConstant2D,
|
||||
}
|
||||
|
||||
impl GoniometricLight {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(
|
||||
render_from_light: &Transform,
|
||||
medium_interface: &MediumInterface,
|
||||
|
|
|
|||
|
|
@ -1,9 +1,8 @@
|
|||
use crate::{
|
||||
core::geometry::Frame,
|
||||
core::medium::Medium,
|
||||
spectra::{RGB, RGBColorSpace, RGBIlluminantSpectrum},
|
||||
spectra::{RGBColorSpace, RGBIlluminantSpectrum},
|
||||
utils::{
|
||||
math::{clamp, equal_area_square_to_sphere},
|
||||
math::{clamp, equal_area_sphere_to_square, equal_area_square_to_sphere, square},
|
||||
sampling::{
|
||||
AliasTable, PiecewiseConstant2D, WindowedPiecewiseConstant2D, sample_uniform_sphere,
|
||||
uniform_sphere_pdf,
|
||||
|
|
@ -11,7 +10,21 @@ use crate::{
|
|||
},
|
||||
};
|
||||
|
||||
use crate::images::{PixelFormat, WrapMode};
|
||||
use crate::core::color::RGB;
|
||||
use crate::core::geometry::{
|
||||
Bounds2f, Bounds3f, Normal3f, Point2f, Point2i, Point3f, Ray, Vector2f, Vector3f,
|
||||
};
|
||||
use crate::core::image::{Image, PixelFormat, WrapMode};
|
||||
use crate::core::interaction::{Interaction, SimpleInteraction};
|
||||
use crate::core::light::{
|
||||
LightBase, LightBounds, LightLiSample, LightSampleContext, LightTrait, LightType,
|
||||
};
|
||||
use crate::core::medium::{Medium, MediumInterface};
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::Transform;
|
||||
use crate::{Float, PI};
|
||||
use std::sync::Arc;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
|
|
@ -25,7 +38,7 @@ pub struct InfiniteUniformLight {
|
|||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl InfiniteUniformLight {
|
||||
pub fn new(render_from_light: TransformGeneric<Float>, le: Spectrum, scale: Float) -> Self {
|
||||
pub fn new(render_from_light: Transform, le: Spectrum, scale: Float) -> Self {
|
||||
let base = LightBase::new(
|
||||
LightType::Infinite,
|
||||
&render_from_light,
|
||||
|
|
@ -109,78 +122,31 @@ impl LightTrait for InfiniteUniformLight {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct InfiniteImageLight {
|
||||
base: LightBase,
|
||||
image: Image,
|
||||
image_color_space: u32,
|
||||
scale: Float,
|
||||
scene_radius: Float,
|
||||
scene_center: Point3f,
|
||||
distrib: PiecewiseConstant2D,
|
||||
compensated_distrib: PiecewiseConstant2D,
|
||||
pub base: LightBase,
|
||||
pub image: *const Image,
|
||||
pub image_color_space: *const RGBColorSpace,
|
||||
pub distrib: *const PiecewiseConstant2D,
|
||||
pub compensated_distrib: *const PiecewiseConstant2D,
|
||||
pub scale: Float,
|
||||
pub scene_radius: Float,
|
||||
pub scene_center: Point3f,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
unsafe impl Send for InfiniteImageLight {}
|
||||
unsafe impl Sync for InfiniteImageLight {}
|
||||
|
||||
impl InfiniteImageLight {
|
||||
pub fn new(
|
||||
render_from_light: TransformGeneric<Float>,
|
||||
image: Image,
|
||||
image_color_space: Arc<RGBColorSpace>,
|
||||
scale: Float,
|
||||
filename: String,
|
||||
) -> Self {
|
||||
let base = LightBase::new(
|
||||
LightType::Infinite,
|
||||
&render_from_light,
|
||||
&MediumInterface::default(),
|
||||
);
|
||||
#[inline(always)]
|
||||
fn color_space(&self) -> &RGBColorSpace {
|
||||
unsafe { &*self.image_color_space }
|
||||
}
|
||||
|
||||
let desc = image
|
||||
.get_channel_desc(&["R", "G", "B"])
|
||||
.expect("Image used for DiffuseAreaLight doesn't have R, G, B channels");
|
||||
|
||||
assert_eq!(3, desc.size());
|
||||
assert!(desc.is_identity());
|
||||
if image.resolution().x() != image.resolution().y() {
|
||||
panic!(
|
||||
"{}: image resolution ({}, {}) is non-square. It's unlikely this is an equal area environment map.",
|
||||
filename,
|
||||
image.resolution.x(),
|
||||
image.resolution.y()
|
||||
);
|
||||
}
|
||||
let mut d = image.get_sampling_distribution_uniform();
|
||||
let domain = Bounds2f::from_points(Point2f::new(0., 0.), Point2f::new(1., 1.));
|
||||
let distrib = PiecewiseConstant2D::new_with_bounds(&d, domain);
|
||||
let slice = &mut d.values; // or d.as_slice_mut()
|
||||
let count = slice.len() as Float;
|
||||
let sum: Float = slice.iter().sum();
|
||||
let average = sum / count;
|
||||
|
||||
for v in slice.iter_mut() {
|
||||
*v = (*v - average).max(0.0);
|
||||
}
|
||||
|
||||
let all_zero = slice.iter().all(|&v| v == 0.0);
|
||||
if all_zero {
|
||||
for v in slice.iter_mut() {
|
||||
*v = 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
let compensated_distrib = PiecewiseConstant2D::new_with_bounds(&d, domain);
|
||||
|
||||
Self {
|
||||
base,
|
||||
image,
|
||||
image_color_space,
|
||||
scene_center: Point3f::default(),
|
||||
scene_radius: 0.,
|
||||
scale,
|
||||
distrib,
|
||||
compensated_distrib,
|
||||
}
|
||||
#[inline(always)]
|
||||
fn image(&self) -> &Image {
|
||||
unsafe { &*self.image }
|
||||
}
|
||||
|
||||
fn image_le(&self, uv: Point2f, lambda: &SampledWavelengths) -> SampledSpectrum {
|
||||
|
|
@ -192,8 +158,7 @@ impl InfiniteImageLight {
|
|||
WrapMode::OctahedralSphere.into(),
|
||||
);
|
||||
}
|
||||
let spec =
|
||||
RGBIlluminantSpectrum::new(self.image_color_space.as_ref(), RGB::clamp_zero(rgb));
|
||||
let spec = RGBIlluminantSpectrum::new(self.color_space(), RGB::clamp_zero(rgb));
|
||||
self.scale * spec.sample(lambda)
|
||||
}
|
||||
}
|
||||
|
|
@ -312,7 +277,6 @@ pub struct InfinitePortalLight {
|
|||
pub image: Image,
|
||||
pub image_color_space: RGBColorSpace,
|
||||
pub scale: Float,
|
||||
pub filename: String,
|
||||
pub portal: [Point3f; 4],
|
||||
pub portal_frame: Frame,
|
||||
pub distribution: WindowedPiecewiseConstant2D,
|
||||
|
|
@ -320,137 +284,7 @@ pub struct InfinitePortalLight {
|
|||
pub scene_radius: Float,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl InfinitePortalLight {
|
||||
pub fn new(
|
||||
render_from_light: TransformGeneric<Float>,
|
||||
equal_area_image: &Image,
|
||||
image_color_space: Arc<RGBColorSpace>,
|
||||
scale: Float,
|
||||
filename: String,
|
||||
points: Vec<Point3f>,
|
||||
) -> Self {
|
||||
let base = LightBase::new(
|
||||
LightType::Infinite,
|
||||
&render_from_light,
|
||||
&MediumInterface::default(),
|
||||
);
|
||||
|
||||
let desc = equal_area_image
|
||||
.get_channel_desc(&["R", "G", "B"])
|
||||
.unwrap_or_else(|_| {
|
||||
panic!(
|
||||
"{}: image used for PortalImageInfiniteLight doesn't have R, G, B channels.",
|
||||
filename
|
||||
)
|
||||
});
|
||||
|
||||
assert_eq!(3, desc.offset.len());
|
||||
let src_res = equal_area_image.resolution;
|
||||
if src_res.x() != src_res.y() {
|
||||
panic!(
|
||||
"{}: image resolution ({}, {}) is non-square. It's unlikely this is an equal area environment map.",
|
||||
filename,
|
||||
src_res.x(),
|
||||
src_res.y()
|
||||
);
|
||||
}
|
||||
|
||||
if points.len() != 4 {
|
||||
panic!(
|
||||
"Expected 4 vertices for infinite light portal but given {}",
|
||||
points.len()
|
||||
);
|
||||
}
|
||||
|
||||
let portal: [Point3f; 4] = [points[0], points[1], points[2], points[3]];
|
||||
|
||||
let p01 = (portal[1] - portal[0]).normalize();
|
||||
let p12 = (portal[2] - portal[1]).normalize();
|
||||
let p32 = (portal[2] - portal[3]).normalize();
|
||||
let p03 = (portal[3] - portal[0]).normalize();
|
||||
|
||||
if (p01.dot(p32) - 1.0).abs() > 0.001 || (p12.dot(p03) - 1.0).abs() > 0.001 {
|
||||
panic!("Infinite light portal isn't a planar quadrilateral (opposite edges)");
|
||||
}
|
||||
|
||||
if p01.dot(p12).abs() > 0.001
|
||||
|| p12.dot(p32).abs() > 0.001
|
||||
|| p32.dot(p03).abs() > 0.001
|
||||
|| p03.dot(p01).abs() > 0.001
|
||||
{
|
||||
panic!("Infinite light portal isn't a planar quadrilateral (perpendicular edges)");
|
||||
}
|
||||
|
||||
let portal_frame = Frame::from_xy(p03, p01);
|
||||
|
||||
let width = src_res.x();
|
||||
let height = src_res.y();
|
||||
|
||||
let mut new_pixels = vec![0.0 as Float; (width * height * 3) as usize];
|
||||
|
||||
new_pixels
|
||||
.par_chunks_mut((width * 3) as usize)
|
||||
.enumerate()
|
||||
.for_each(|(y, row_pixels)| {
|
||||
let y = y as i32;
|
||||
|
||||
for x in 0..width {
|
||||
let uv = Point2f::new(
|
||||
(x as Float + 0.5) / width as Float,
|
||||
(y as Float + 0.5) / height as Float,
|
||||
);
|
||||
|
||||
let (w_world, _) = Self::render_from_image(portal_frame, uv);
|
||||
let w_local = render_from_light.apply_inverse_vector(w_world).normalize();
|
||||
let uv_equi = equal_area_sphere_to_square(w_local);
|
||||
|
||||
let pixel_idx = (x * 3) as usize;
|
||||
|
||||
for c in 0..3 {
|
||||
let val = equal_area_image.bilerp_channel_with_wrap(
|
||||
uv_equi,
|
||||
c,
|
||||
WrapMode::OctahedralSphere.into(),
|
||||
);
|
||||
row_pixels[pixel_idx + c] = val;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let image = Image::new(
|
||||
PixelFormat::F32,
|
||||
src_res,
|
||||
&["R", "G", "B"],
|
||||
equal_area_image.encoding,
|
||||
);
|
||||
|
||||
let duv_dw_closure = |p: Point2f| -> Float {
|
||||
let (_, jacobian) = Self::render_from_image(portal_frame, p);
|
||||
jacobian
|
||||
};
|
||||
|
||||
let d = image.get_sampling_distribution(
|
||||
duv_dw_closure,
|
||||
Bounds2f::from_points(Point2f::new(0., 0.), Point2f::new(1., 1.)),
|
||||
);
|
||||
|
||||
let distribution = WindowedPiecewiseConstant2D::new(d);
|
||||
|
||||
Self {
|
||||
base,
|
||||
image,
|
||||
image_color_space,
|
||||
scale,
|
||||
scene_center: Point3f::default(),
|
||||
scene_radius: 0.,
|
||||
filename,
|
||||
portal,
|
||||
portal_frame,
|
||||
distribution,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn image_lookup(&self, uv: Point2f, lambda: &SampledWavelengths) -> SampledSpectrum {
|
||||
let mut rgb = RGB::default();
|
||||
for c in 0..3 {
|
||||
|
|
@ -571,8 +405,8 @@ impl LightTrait for InfinitePortalLight {
|
|||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
fn preprocess(&mut self, _scene_bounds: &Bounds3f) {
|
||||
todo!()
|
||||
fn preprocess(&mut self, scene_bounds: &Bounds3f) {
|
||||
(self.scene_center, self.scene_radius) = scene_bounds.bounding_sphere();
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
|
|
|
|||
|
|
@ -13,3 +13,4 @@ pub use goniometric::GoniometricLight;
|
|||
pub use infinite::{InfiniteImageLight, InfinitePortalLight, InfiniteUniformLight};
|
||||
pub use point::PointLight;
|
||||
pub use projection::ProjectionLight;
|
||||
pub use spot::SpotLight;
|
||||
|
|
|
|||
|
|
@ -1,17 +1,20 @@
|
|||
use crate::Float;
|
||||
use crate::core::light::LightBaseData;
|
||||
use crate::spectra::SampledSpectrum;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector3f};
|
||||
use crate::core::interaction::{Interaction, SimpleInteraction};
|
||||
use crate::core::light::{
|
||||
Light, LightBase, LightBounds, LightLiSample, LightSampleContext, LightTrait, LightType,
|
||||
};
|
||||
use crate::spectra::{DenselySampledSpectrum, SampledSpectrum, SampledWavelengths};
|
||||
use crate::{Float, PI};
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct PointLight {
|
||||
pub base: LightBasea,
|
||||
pub i:
|
||||
pub base: LightBase,
|
||||
pub scale: Float,
|
||||
pub i: *const DenselySampledSpectrum,
|
||||
}
|
||||
|
||||
impl LightTrait for PointLight {
|
||||
impl PointLight {
|
||||
fn sample_li_base(
|
||||
&self,
|
||||
ctx_p: Point3f,
|
||||
|
|
@ -27,7 +30,9 @@ impl LightTrait for PointLight {
|
|||
let li = self.scale * spectrum.sample(lambda) / p.distance_squared(ctx_p);
|
||||
(li, wi, 1.0, pi)
|
||||
}
|
||||
}
|
||||
|
||||
impl LightTrait for PointLight {
|
||||
fn base(&self) -> &LightBase {
|
||||
&self.base
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,17 @@
|
|||
use crate::Float;
|
||||
use crate::core::color::RGB;
|
||||
use crate::core::geometry::{
|
||||
Bounds2f, Bounds3f, Normal3f, Point2f, Point2i, Point3f, Ray, Vector3f, VectorLike, cos_theta,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::light::{
|
||||
LightBase, LightBounds, LightLiSample, LightSampleContext, LightTrait, LightType,
|
||||
};
|
||||
use crate::core::medium::MediumInterface;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::math::{radians, square};
|
||||
use crate::{
|
||||
spectra::{RGB, RGBColorSpace},
|
||||
spectra::{RGBColorSpace, RGBIlluminantSpectrum},
|
||||
utils::{Transform, sampling::PiecewiseConstant2D},
|
||||
};
|
||||
|
||||
|
|
@ -12,65 +24,14 @@ pub struct ProjectionLight {
|
|||
pub screen_bounds: Bounds2f,
|
||||
pub screen_from_light: Transform,
|
||||
pub light_from_screen: Transform,
|
||||
pub image_id: u32,
|
||||
pub a: Float,
|
||||
pub distrib: PiecewiseConstant2D,
|
||||
pub image: *const Image,
|
||||
pub distrib: *const PiecewiseConstant2D,
|
||||
pub image_color_space: *const RGBColorSpace,
|
||||
}
|
||||
|
||||
impl ProjectionLight {
|
||||
pub fn new(
|
||||
render_from_light: Transform,
|
||||
medium_interface: MediumInterface,
|
||||
image_id: u32,
|
||||
image_color_space: RGBColorSpace,
|
||||
scale: Float,
|
||||
fov: Float,
|
||||
) -> Self {
|
||||
let base = LightBase::new(
|
||||
LightType::DeltaPosition,
|
||||
&render_from_light,
|
||||
&medium_interface,
|
||||
);
|
||||
let image = Image::new();
|
||||
let aspect = image.resolution().x() as Float / image.resolution().y() as Float;
|
||||
let screen_bounds = if aspect > 1. {
|
||||
Bounds2f::from_points(Point2f::new(-aspect, -1.), Point2f::new(aspect, 1.))
|
||||
} else {
|
||||
Bounds2f::from_points(
|
||||
Point2f::new(-1., 1. / aspect),
|
||||
Point2f::new(1., 1. / aspect),
|
||||
)
|
||||
};
|
||||
|
||||
let hither = 1e-3;
|
||||
let screen_from_light = TransformGeneric::perspective(fov, hither, 1e30).unwrap();
|
||||
let light_from_screen = screen_from_light.inverse();
|
||||
let opposite = (radians(fov) / 2.).tan();
|
||||
let aspect_ratio = if aspect > 1. { aspect } else { 1. / aspect };
|
||||
let a = 4. * square(opposite) * aspect_ratio;
|
||||
let dwda = |p: Point2f| {
|
||||
let w =
|
||||
Vector3f::from(light_from_screen.apply_to_point(Point3f::new(p.x(), p.y(), 0.)));
|
||||
cos_theta(w.normalize()).powi(3)
|
||||
};
|
||||
|
||||
let d = image.get_sampling_distribution(dwda, screen_bounds);
|
||||
let distrib = PiecewiseConstant2D::new_with_bounds(&d, screen_bounds);
|
||||
|
||||
Self {
|
||||
base,
|
||||
image_id,
|
||||
image_color_space,
|
||||
screen_bounds,
|
||||
screen_from_light,
|
||||
light_from_screen,
|
||||
scale,
|
||||
hither,
|
||||
a,
|
||||
distrib,
|
||||
}
|
||||
}
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
|
||||
pub fn i(&self, w: Vector3f, lambda: SampledWavelengths) -> SampledSpectrum {
|
||||
if w.z() < self.hither {
|
||||
|
|
@ -149,10 +110,12 @@ impl LightTrait for ProjectionLight {
|
|||
rgb[c] = self.image.get_channel(Point2i::new(x, y), c);
|
||||
}
|
||||
|
||||
let s = RGBIlluminantSpectrum::new(
|
||||
self.image_color_space.as_ref(),
|
||||
RGB::clamp_zero(rgb),
|
||||
);
|
||||
let s = unsafe {
|
||||
RGBIlluminantSpectrum::new(
|
||||
self.image_color_space.as_ref(),
|
||||
RGB::clamp_zero(rgb),
|
||||
);
|
||||
};
|
||||
sum += s.sample(&lambda) * dwda;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,13 +1,12 @@
|
|||
use crate::core::geometry::primitives::OctahedralVector;
|
||||
use crate::core::geometry::{Bounds3f, Normal3f, Point3f, Vector3f, VectorLike};
|
||||
use crate::core::geometry::{DirectionCone, Normal};
|
||||
use crate::utils::math::{clamp, lerp, sample_discrete};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::core::light::Light;
|
||||
use crate::core::light::{LightBounds, LightSampleContext};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::math::{clamp, lerp, sample_discrete};
|
||||
use crate::utils::math::{safe_sqrt, square};
|
||||
use crate::utils::ptr::{Ptr, Slice};
|
||||
use crate::utils::sampling::AliasTable;
|
||||
use crate::{Float, ONE_MINUS_EPSILON, PI};
|
||||
use enum_dispatch::enum_dispatch;
|
||||
|
|
@ -155,22 +154,22 @@ impl CompactLightBounds {
|
|||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SampledLight {
|
||||
pub light: Arc<Light>,
|
||||
pub light: Ptr<Light>,
|
||||
pub p: Float,
|
||||
}
|
||||
|
||||
impl SampledLight {
|
||||
pub fn new(light: Arc<Light>, p: Float) -> Self {
|
||||
pub fn new(light: Light, p: Float) -> Self {
|
||||
Self { light, p }
|
||||
}
|
||||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait LightSamplerTrait: Send + Sync + std::fmt::Debug {
|
||||
pub trait LightSamplerTrait {
|
||||
fn sample_with_context(&self, ctx: &LightSampleContext, u: Float) -> Option<SampledLight>;
|
||||
fn pmf_with_context(&self, ctx: &LightSampleContext, light: &Arc<Light>) -> Float;
|
||||
fn pmf_with_context(&self, ctx: &LightSampleContext, light: &Light) -> Float;
|
||||
fn sample(&self, u: Float) -> Option<SampledLight>;
|
||||
fn pmf(&self, light: &Arc<Light>) -> Float;
|
||||
fn pmf(&self, light: &Light) -> Float;
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
|
|
@ -183,14 +182,18 @@ pub enum LightSampler {
|
|||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct UniformLightSampler {
|
||||
lights: Vec<Arc<Light>>,
|
||||
lights: *const Light,
|
||||
lights_len: u32,
|
||||
}
|
||||
|
||||
impl UniformLightSampler {
|
||||
pub fn new(lights: &[Arc<Light>]) -> Self {
|
||||
Self {
|
||||
lights: lights.to_vec(),
|
||||
}
|
||||
pub fn new(lights: *const Light, lights_len: u32) -> Self {
|
||||
Self { lights, lights_len }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn light(&self, idx: usize) -> Light {
|
||||
unsafe { *self.lights.add(idx) }
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -198,77 +201,52 @@ impl LightSamplerTrait for UniformLightSampler {
|
|||
fn sample_with_context(&self, _ctx: &LightSampleContext, u: Float) -> Option<SampledLight> {
|
||||
self.sample(u)
|
||||
}
|
||||
fn pmf_with_context(&self, _ctx: &LightSampleContext, light: &Arc<Light>) -> Float {
|
||||
fn pmf_with_context(&self, _ctx: &LightSampleContext, light: &Light) -> Float {
|
||||
self.pmf(light)
|
||||
}
|
||||
fn sample(&self, u: Float) -> Option<SampledLight> {
|
||||
if self.lights.is_empty() {
|
||||
if self.lights_len == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
let light_index = (u as usize * self.lights.len()).min(self.lights.len() - 1);
|
||||
let light_index = (u as u32 * self.lights_len).min(self.lights_len - 1) as usize;
|
||||
Some(SampledLight {
|
||||
light: self.lights[light_index].clone(),
|
||||
p: 1. / self.lights.len() as Float,
|
||||
light: self.light(light_index),
|
||||
p: 1. / self.lights_len as Float,
|
||||
})
|
||||
}
|
||||
fn pmf(&self, _light: &Arc<Light>) -> Float {
|
||||
if self.lights.is_empty() {
|
||||
fn pmf(&self, _light: &Light) -> Float {
|
||||
if self.lights_len == 0 {
|
||||
return 0.;
|
||||
}
|
||||
1. / self.lights.len() as Float
|
||||
1. / self.lights_len as Float
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Alias {
|
||||
pub q: Float,
|
||||
pub alias: u32,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct PowerLightSampler {
|
||||
lights: Vec<Arc<Light>>,
|
||||
light_to_index: HashMap<usize, usize>,
|
||||
alias_table: AliasTable,
|
||||
pub lights: Slice<Light>,
|
||||
pub lights_len: u32,
|
||||
pub alias_table: AliasTable,
|
||||
}
|
||||
|
||||
impl PowerLightSampler {
|
||||
pub fn new(lights: &[Arc<Light>]) -> Self {
|
||||
if lights.is_empty() {
|
||||
return Self {
|
||||
lights: Vec::new(),
|
||||
light_to_index: HashMap::new(),
|
||||
alias_table: AliasTable::new(&[]),
|
||||
};
|
||||
}
|
||||
|
||||
let mut lights_vec = Vec::with_capacity(lights.len());
|
||||
let mut light_to_index = HashMap::with_capacity(lights.len());
|
||||
let mut light_power = Vec::with_capacity(lights.len());
|
||||
|
||||
let lambda = SampledWavelengths::sample_visible(0.5);
|
||||
|
||||
for (i, light) in lights.iter().enumerate() {
|
||||
lights_vec.push(light.clone());
|
||||
|
||||
let ptr = Arc::as_ptr(light) as usize;
|
||||
light_to_index.insert(ptr, i);
|
||||
|
||||
let phi = SampledSpectrum::safe_div(&light.phi(lambda), &lambda.pdf());
|
||||
light_power.push(phi.average());
|
||||
}
|
||||
|
||||
let alias_table = AliasTable::new(&light_power);
|
||||
|
||||
Self {
|
||||
lights: lights_vec,
|
||||
light_to_index,
|
||||
alias_table,
|
||||
}
|
||||
}
|
||||
}
|
||||
unsafe impl Send for PowerLightSampler {}
|
||||
unsafe impl Sync for PowerLightSampler {}
|
||||
|
||||
impl LightSamplerTrait for PowerLightSampler {
|
||||
fn sample_with_context(&self, _ctx: &LightSampleContext, u: Float) -> Option<SampledLight> {
|
||||
self.sample(u)
|
||||
}
|
||||
|
||||
fn pmf_with_context(&self, _ctx: &LightSampleContext, light: &Arc<Light>) -> Float {
|
||||
fn pmf_with_context(&self, _ctx: &LightSampleContext, light: &Light) -> Float {
|
||||
self.pmf(light)
|
||||
}
|
||||
|
||||
|
|
@ -279,24 +257,29 @@ impl LightSamplerTrait for PowerLightSampler {
|
|||
|
||||
let (light_index, pmf, _) = self.alias_table.sample(u);
|
||||
|
||||
let light_ref = &self.lights[light_index as usize];
|
||||
Some(SampledLight {
|
||||
light: self.lights[light_index].clone(),
|
||||
light: Ptr::from(light_ref),
|
||||
p: pmf,
|
||||
})
|
||||
}
|
||||
|
||||
fn pmf(&self, light: &Arc<Light>) -> Float {
|
||||
if self.alias_table.size() == 0 {
|
||||
return 0.;
|
||||
fn pmf(&self, light: &Light) -> Float {
|
||||
if self.lights_len == 0 {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let ptr = Arc::as_ptr(light) as usize;
|
||||
let light_ptr = light as *const Light;
|
||||
let start = self.lights.as_ptr();
|
||||
|
||||
if let Some(&index) = self.light_to_index.get(&ptr) {
|
||||
self.alias_table.pmf(index)
|
||||
} else {
|
||||
0.0
|
||||
let end = unsafe { start.add(self.lights.len as usize) };
|
||||
|
||||
if light_ptr >= start && light_ptr < end {
|
||||
let index = unsafe { light_ptr.offset_from(start) };
|
||||
return self.alias_table.pmf(index as u32);
|
||||
}
|
||||
|
||||
0.
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -304,7 +287,6 @@ impl LightSamplerTrait for PowerLightSampler {
|
|||
#[repr(C, align(32))]
|
||||
pub struct LightBVHNode {
|
||||
pub light_bounds: CompactLightBounds,
|
||||
|
||||
// Bit 31 (MSB) : isLeaf (1 bit)
|
||||
// Bits 0..31 : childOrLightIndex (31 bits)
|
||||
packed_data: u32,
|
||||
|
|
@ -373,14 +355,40 @@ impl LightBVHNode {
|
|||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct BVHLightSampler {
|
||||
lights: Vec<Arc<Light>>,
|
||||
infinite_lights: Vec<Arc<Light>>,
|
||||
all_light_bounds: Bounds3f,
|
||||
nodes: Vec<LightBVHNode>,
|
||||
light_to_bit_trail: HashMap<usize, usize>,
|
||||
pub nodes: *const LightBVHNode,
|
||||
pub lights: *const Light,
|
||||
pub infinite_lights: *const Light,
|
||||
pub bit_trails: *const u64,
|
||||
pub nodes_len: u32,
|
||||
pub lights_len: u32,
|
||||
pub infinite_lights_len: u32,
|
||||
pub all_light_bounds: Bounds3f,
|
||||
}
|
||||
|
||||
unsafe impl Send for BVHLightSampler {}
|
||||
unsafe impl Sync for BVHLightSampler {}
|
||||
|
||||
impl BVHLightSampler {
|
||||
#[inline(always)]
|
||||
fn node(&self, idx: usize) -> &LightBVHNode {
|
||||
unsafe { &*self.nodes.add(idx) }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn light(&self, idx: usize) -> Light {
|
||||
unsafe { *self.lights.add(idx) }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn infinite_light(&self, idx: usize) -> Light {
|
||||
unsafe { *self.infinite_lights.add(idx) }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn bit_trail(&self, idx: usize) -> u64 {
|
||||
unsafe { *self.bit_trails.add(idx) }
|
||||
}
|
||||
|
||||
fn evaluate_cost(&self, b: &LightBounds, bounds: &Bounds3f, dim: usize) -> Float {
|
||||
let theta_o = b.cos_theta_o.acos();
|
||||
let theta_e = b.cos_theta_e.acos();
|
||||
|
|
@ -397,9 +405,9 @@ impl BVHLightSampler {
|
|||
|
||||
impl LightSamplerTrait for BVHLightSampler {
|
||||
fn sample_with_context(&self, ctx: &LightSampleContext, mut u: Float) -> Option<SampledLight> {
|
||||
let empty_nodes = if self.nodes.is_empty() { 0. } else { 1. };
|
||||
let inf_size = self.infinite_lights.len() as Float;
|
||||
let light_size = self.lights.len() as Float;
|
||||
let empty_nodes = if self.nodes_len == 0 { 0. } else { 1. };
|
||||
let inf_size = self.infinite_lights_len as Float;
|
||||
let light_size = self.lights_len as Float;
|
||||
|
||||
let p_inf = inf_size / (inf_size + empty_nodes);
|
||||
|
||||
|
|
@ -407,115 +415,128 @@ impl LightSamplerTrait for BVHLightSampler {
|
|||
u /= p_inf;
|
||||
let ind = (u * light_size).min(light_size - 1.) as usize;
|
||||
let pmf = p_inf / inf_size;
|
||||
Some(SampledLight::new(self.infinite_lights[ind].clone(), pmf))
|
||||
} else {
|
||||
if self.nodes.is_empty() {
|
||||
return None;
|
||||
}
|
||||
let p = ctx.p();
|
||||
let n = ctx.ns;
|
||||
u = ((u - p_inf) / (1. - p_inf)).min(ONE_MINUS_EPSILON);
|
||||
let mut node_ind = 0;
|
||||
let mut pmf = 1. - p_inf;
|
||||
return Some(SampledLight::new(self.infinite_light(ind), pmf));
|
||||
}
|
||||
|
||||
loop {
|
||||
let node = self.nodes[node_ind];
|
||||
if !node.is_leaf() {
|
||||
let children: [LightBVHNode; 2] = [
|
||||
self.nodes[node_ind + 1],
|
||||
self.nodes[node.child_or_light_index() as usize],
|
||||
];
|
||||
let ci: [Float; 2] = [
|
||||
children[0]
|
||||
.light_bounds
|
||||
.importance(p, n, &self.all_light_bounds),
|
||||
children[1]
|
||||
.light_bounds
|
||||
.importance(p, n, &self.all_light_bounds),
|
||||
];
|
||||
if self.nodes_len == 0 {
|
||||
return None;
|
||||
}
|
||||
let p = ctx.p();
|
||||
let n = ctx.ns;
|
||||
u = ((u - p_inf) / (1. - p_inf)).min(ONE_MINUS_EPSILON);
|
||||
let mut node_ind = 0;
|
||||
let mut pmf = 1. - p_inf;
|
||||
|
||||
if ci[0] == 0. && ci[1] == 0. {
|
||||
return None;
|
||||
}
|
||||
loop {
|
||||
let node = self.node(node_ind);
|
||||
if !node.is_leaf() {
|
||||
let child0_idx = node_ind + 1;
|
||||
let child1_idx = node.child_or_light_index() as usize;
|
||||
let child0 = self.node(child0_idx);
|
||||
let child1 = self.node(child1_idx);
|
||||
|
||||
let mut node_pmf: Float = 0.;
|
||||
let child = sample_discrete(&ci, u, Some(&mut node_pmf), Some(&mut u));
|
||||
pmf *= node_pmf;
|
||||
node_ind = if child == 0 {
|
||||
node_ind + 1
|
||||
} else {
|
||||
node.child_or_light_index() as usize
|
||||
};
|
||||
} else {
|
||||
if node_ind > 0
|
||||
|| node.light_bounds.importance(p, n, &self.all_light_bounds) > 0.
|
||||
{
|
||||
return Some(SampledLight::new(
|
||||
self.lights[node.child_or_light_index() as usize].clone(),
|
||||
pmf,
|
||||
));
|
||||
}
|
||||
let ci: [Float; 2] = [
|
||||
child0.light_bounds.importance(p, n, &self.all_light_bounds),
|
||||
child1.light_bounds.importance(p, n, &self.all_light_bounds),
|
||||
];
|
||||
|
||||
if ci[0] == 0. && ci[1] == 0. {
|
||||
return None;
|
||||
}
|
||||
|
||||
let mut node_pmf: Float = 0.;
|
||||
let child = sample_discrete(&ci, u, Some(&mut node_pmf), Some(&mut u));
|
||||
pmf *= node_pmf;
|
||||
node_ind = if child == 0 { child0_idx } else { child1_idx };
|
||||
} else {
|
||||
if node_ind > 0 || node.light_bounds.importance(p, n, &self.all_light_bounds) > 0. {
|
||||
let light_idx = node.child_or_light_index() as usize;
|
||||
return Some(SampledLight::new(self.light(light_idx), pmf));
|
||||
}
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn pmf_with_context(&self, ctx: &LightSampleContext, light: &Arc<Light>) -> Float {
|
||||
let ptr = Arc::as_ptr(light) as usize;
|
||||
let empty_nodes = if self.nodes.is_empty() { 0. } else { 1. };
|
||||
if self.light_to_bit_trail.contains_key(&ptr) {
|
||||
return 1. / (self.infinite_lights.len() as Float + empty_nodes);
|
||||
fn pmf_with_context(&self, ctx: &LightSampleContext, light: &Light) -> Float {
|
||||
let light_ptr = light as *const Light;
|
||||
let empty_nodes = if self.nodes_len == 0 { 0. } else { 1. };
|
||||
let n_infinite = self.infinite_lights_len as Float;
|
||||
|
||||
let inf_start = self.infinite_lights;
|
||||
let inf_end = unsafe { self.infinite_lights.add(self.infinite_lights_len as usize) };
|
||||
if light_ptr >= inf_start && light_ptr < inf_end {
|
||||
return 1.0 / (n_infinite + empty_nodes);
|
||||
}
|
||||
|
||||
let mut bit_trail = self.light_to_bit_trail[&ptr];
|
||||
let finite_start = self.lights;
|
||||
let finite_end = unsafe { self.lights.add(self.lights_len as usize) };
|
||||
|
||||
if light_ptr < finite_start || light_ptr >= finite_end {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let light_index = unsafe { light_ptr.offset_from(finite_start) as usize };
|
||||
|
||||
let mut bit_trail = self.bit_trail(light_index);
|
||||
|
||||
let p_inf = n_infinite / (n_infinite + empty_nodes);
|
||||
let mut pmf = 1.0 - p_inf;
|
||||
let mut node_ind = 0;
|
||||
let p = ctx.p();
|
||||
let n = ctx.ns;
|
||||
let p_inf = self.infinite_lights.len() as Float
|
||||
/ (self.infinite_lights.len() as Float + empty_nodes);
|
||||
let mut pmf = 1. - p_inf;
|
||||
let mut node_ind = 0;
|
||||
|
||||
loop {
|
||||
let node = self.nodes[node_ind];
|
||||
let node = self.node(node_ind);
|
||||
if node.is_leaf() {
|
||||
return pmf;
|
||||
}
|
||||
let child0 = self.nodes[node_ind + 1];
|
||||
let child1 = self.nodes[node.child_or_light_index() as usize];
|
||||
let child0 = self.node(node_ind + 1);
|
||||
let child1 = self.node(node.child_or_light_index() as usize);
|
||||
let ci = [
|
||||
child0.light_bounds.importance(p, n, &self.all_light_bounds),
|
||||
child1.light_bounds.importance(p, n, &self.all_light_bounds),
|
||||
];
|
||||
pmf *= ci[bit_trail & 1] / (ci[0] + ci[1]);
|
||||
node_ind = if (bit_trail & 1) != 0 {
|
||||
|
||||
let sum_importance = ci[0] + ci[1];
|
||||
if sum_importance == 0.0 {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let which_child = (bit_trail & 1) as usize;
|
||||
|
||||
// Update probability: prob of picking the correct child
|
||||
pmf *= ci[which_child] / sum_importance;
|
||||
|
||||
// Advance
|
||||
node_ind = if which_child == 1 {
|
||||
node.child_or_light_index() as usize
|
||||
} else {
|
||||
node_ind + 1
|
||||
};
|
||||
|
||||
bit_trail >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
fn sample(&self, u: Float) -> Option<SampledLight> {
|
||||
if self.lights.is_empty() {
|
||||
if self.lights_len == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
let light_ind =
|
||||
(u * self.lights.len() as Float).min(self.lights.len() as Float - 1.) as usize;
|
||||
let light_ind = (u * self.lights_len as Float).min(self.lights_len as Float - 1.) as usize;
|
||||
|
||||
Some(SampledLight::new(
|
||||
self.lights[light_ind].clone(),
|
||||
1. / self.lights.len() as Float,
|
||||
self.light(light_ind),
|
||||
1. / self.lights_len as Float,
|
||||
))
|
||||
}
|
||||
|
||||
fn pmf(&self, _light: &Arc<Light>) -> Float {
|
||||
if self.lights.is_empty() {
|
||||
fn pmf(&self, _light: &Light) -> Float {
|
||||
if self.lights_len == 0 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
1. / self.lights.len() as Float
|
||||
1. / self.lights_len as Float
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,16 +1,24 @@
|
|||
use crate::core::light::{LightBase, LightLiSample, LightSampleContext, LightTrait};
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector3f, VectorLike,
|
||||
};
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, SimpleInteraction};
|
||||
use crate::core::light::{LightBase, LightBounds, LightLiSample, LightSampleContext, LightTrait};
|
||||
use crate::core::spectrum::SpectrumTrait;
|
||||
use crate::spectra::{DenselySampledSpectrum, SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::Ptr;
|
||||
use crate::{Float, PI};
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct SpotLight {
|
||||
pub base: LightBase,
|
||||
pub iemit_coeffs: [Float; 32],
|
||||
pub iemit: Ptr<DenselySampledSpectrum>,
|
||||
pub scale: Float,
|
||||
pub cos_falloff_start: Float,
|
||||
pub cos_falloff_end: Float,
|
||||
}
|
||||
|
||||
impl SpotLightData {
|
||||
impl SpotLight {
|
||||
pub fn i(&self, w: Vector3f, lambda: &SampledWavelengths) -> SampledSpectrum {
|
||||
let cos_theta = w.z(); // assuming normalized in light space
|
||||
let falloff = crate::utils::math::smooth_step(
|
||||
|
|
@ -18,8 +26,7 @@ impl SpotLightData {
|
|||
self.cos_falloff_end,
|
||||
self.cos_falloff_start,
|
||||
);
|
||||
let spectrum = DenselySampledSpectrum::from_array(&self.iemit_coeffs);
|
||||
falloff * self.scale * spectrum.sample(lambda)
|
||||
falloff * self.scale * self.iemit.sample(lambda)
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -42,9 +49,9 @@ impl LightTrait for SpotLight {
|
|||
let p: Point3f = pi.into();
|
||||
let wi = (p - ctx.p()).normalize();
|
||||
let w_light = self.base.render_from_light.apply_inverse_vector(-wi);
|
||||
let li = self.i(w_light, *lambda) / p.distance_squared(ctx.p());
|
||||
let li = self.i(w_light, lambda) / p.distance_squared(ctx.p());
|
||||
|
||||
let intr = SimpleInteraction::new(pi, 0.0, Some(self.base.medium_interface.clone()));
|
||||
let intr = SimpleInteraction::new(pi, 0.0, Ptr::from(&self.base.medium_interface));
|
||||
Some(LightLiSample::new(li, wi, 1., Interaction::Simple(intr)))
|
||||
}
|
||||
|
||||
|
|
@ -78,7 +85,7 @@ impl LightTrait for SpotLight {
|
|||
* self.iemit.sample(&lambda)
|
||||
* 2.
|
||||
* PI
|
||||
* ((1. - self.cos_fallof_start) + (self.cos_fallof_start - self.cos_fallof_end) / 2.)
|
||||
* ((1. - self.cos_falloff_start) + (self.cos_falloff_start - self.cos_falloff_end) / 2.)
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
|
|
@ -98,12 +105,12 @@ impl LightTrait for SpotLight {
|
|||
.apply_to_vector(Vector3f::new(0., 0., 1.))
|
||||
.normalize();
|
||||
let phi = self.scale * self.iemit.max_value() * 4. * PI;
|
||||
let cos_theta_e = (self.cos_fallof_end.acos() - self.cos_fallof_start.acos()).cos();
|
||||
let cos_theta_e = (self.cos_falloff_end.acos() - self.cos_falloff_start.acos()).cos();
|
||||
Some(LightBounds::new(
|
||||
&Bounds3f::from_points(p, p),
|
||||
w,
|
||||
phi,
|
||||
self.cos_fallof_start,
|
||||
self.cos_falloff_start,
|
||||
cos_theta_e,
|
||||
false,
|
||||
))
|
||||
|
|
|
|||
337
shared/src/materials/coated.rs
Normal file
337
shared/src/materials/coated.rs
Normal file
|
|
@ -0,0 +1,337 @@
|
|||
use crate::core::bssrdf::BSSRDF;
|
||||
use crate::core::bxdf::{
|
||||
BSDF, BxDF, CoatedConductorBxDF, CoatedDiffuseBxDF, ConductorBxDF, DielectricBxDF, DiffuseBxDF,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::material::{Material, MaterialEvalContext, MaterialTrait};
|
||||
use crate::core::scattering::TrowbridgeReitzDistribution;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvaluator};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::math::clamp;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct CoatedDiffuseMaterial {
|
||||
pub normal_map: *const Image,
|
||||
pub displacement: RelPtr<GPUFloatTexture>,
|
||||
pub reflectance: RelPtr<GPUSpectrumTexture>,
|
||||
pub albedo: RelPtr<GPUSpectrumTexture>,
|
||||
pub u_roughness: RelPtr<GPUFloatTexture>,
|
||||
pub v_roughness: RelPtr<GPUFloatTexture>,
|
||||
pub thickness: RelPtr<GPUFloatTexture>,
|
||||
pub g: RelPtr<GPUFloatTexture>,
|
||||
pub eta: RelPtr<Spectrum>,
|
||||
pub remap_roughness: bool,
|
||||
pub max_depth: usize,
|
||||
pub n_samples: usize,
|
||||
}
|
||||
|
||||
impl CoatedDiffuseMaterial {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(
|
||||
reflectance: GPUSpectrumTexture,
|
||||
u_roughness: GPUFloatTexture,
|
||||
v_roughness: GPUFloatTexture,
|
||||
thickness: GPUFloatTexture,
|
||||
albedo: GPUSpectrumTexture,
|
||||
g: GPUFloatTexture,
|
||||
eta: Spectrum,
|
||||
displacement: GPUFloatTexture,
|
||||
normal_map: *const Image,
|
||||
remap_roughness: bool,
|
||||
max_depth: usize,
|
||||
n_samples: usize,
|
||||
) -> Self {
|
||||
Self {
|
||||
displacement,
|
||||
normal_map,
|
||||
reflectance,
|
||||
albedo,
|
||||
u_roughness,
|
||||
v_roughness,
|
||||
thickness,
|
||||
g,
|
||||
eta,
|
||||
remap_roughness,
|
||||
max_depth,
|
||||
n_samples,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MaterialTrait for CoatedDiffuseMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let r = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.reflectance, ctx, lambda),
|
||||
0.,
|
||||
1.,
|
||||
);
|
||||
|
||||
let mut u_rough = tex_eval.evaluate_float(&self.u_roughness, ctx);
|
||||
let mut v_rough = tex_eval.evaluate_float(&self.v_roughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
u_rough = TrowbridgeReitzDistribution::roughness_to_alpha(u_rough);
|
||||
v_rough = TrowbridgeReitzDistribution::roughness_to_alpha(v_rough);
|
||||
}
|
||||
|
||||
let distrib = TrowbridgeReitzDistribution::new(u_rough, v_rough);
|
||||
|
||||
let thick = tex_eval.evaluate_float(&self.thickness, ctx);
|
||||
let mut sampled_eta = self.eta.evaluate(lambda[0]);
|
||||
if self.eta.is_constant() {
|
||||
let mut lambda = *lambda;
|
||||
lambda.terminate_secondary_inplace();
|
||||
}
|
||||
|
||||
if sampled_eta == 0. {
|
||||
sampled_eta = 1.
|
||||
}
|
||||
|
||||
let a = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.albedo, ctx, lambda),
|
||||
0.,
|
||||
1.,
|
||||
);
|
||||
|
||||
let gg = clamp(tex_eval.evaluate_float(&self.g, ctx), -1., 1.);
|
||||
let bxdf = BxDF::CoatedDiffuse(CoatedDiffuseBxDF::new(
|
||||
DielectricBxDF::new(sampled_eta, distrib),
|
||||
DiffuseBxDF::new(r),
|
||||
thick,
|
||||
a,
|
||||
gg,
|
||||
self.max_depth,
|
||||
self.n_samples,
|
||||
));
|
||||
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(
|
||||
&[self.u_roughness, self.v_roughness, self.thickness, self.g],
|
||||
&[self.reflectance, self.albedo],
|
||||
)
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
self.displacement
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct CoatedConductorMaterial {
|
||||
normal_map: *const Image,
|
||||
displacement: RelPtr<GPUFloatTexture>,
|
||||
interface_uroughness: RelPtr<GPUFloatTexture>,
|
||||
interface_vroughness: RelPtr<GPUFloatTexture>,
|
||||
thickness: RelPtr<GPUFloatTexture>,
|
||||
interface_eta: RelPtr<Spectrum>,
|
||||
g: RelPtr<GPUFloatTexture>,
|
||||
albedo: RelPtr<GPUSpectrumTexture>,
|
||||
conductor_uroughness: RelPtr<GPUFloatTexture>,
|
||||
conductor_vroughness: RelPtr<GPUFloatTexture>,
|
||||
conductor_eta: RelPtr<GPUSpectrumTexture>,
|
||||
k: RelPtr<GPUSpectrumTexture>,
|
||||
reflectance: RelPtr<GPUSpectrumTexture>,
|
||||
remap_roughness: bool,
|
||||
max_depth: u32,
|
||||
n_samples: u32,
|
||||
}
|
||||
|
||||
impl CoatedConductorMaterial {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(
|
||||
displacement: GPUFloatTexture,
|
||||
normal_map: *const Image,
|
||||
interface_uroughness: GPUFloatTexture,
|
||||
interface_vroughness: GPUFloatTexture,
|
||||
thickness: GPUFloatTexture,
|
||||
interface_eta: Spectrum,
|
||||
g: GPUFloatTexture,
|
||||
albedo: GPUSpectrumTexture,
|
||||
conductor_uroughness: GPUFloatTexture,
|
||||
conductor_vroughness: GPUFloatTexture,
|
||||
conductor_eta: Option<GPUSpectrumTexture>,
|
||||
k: Option<GPUSpectrumTexture>,
|
||||
reflectance: GPUSpectrumTexture,
|
||||
remap_roughness: bool,
|
||||
max_depth: usize,
|
||||
n_samples: usize,
|
||||
) -> Self {
|
||||
Self {
|
||||
displacement,
|
||||
normal_map,
|
||||
interface_uroughness,
|
||||
interface_vroughness,
|
||||
thickness,
|
||||
interface_eta,
|
||||
g,
|
||||
albedo,
|
||||
conductor_uroughness,
|
||||
conductor_vroughness,
|
||||
conductor_eta,
|
||||
k,
|
||||
reflectance,
|
||||
remap_roughness,
|
||||
max_depth,
|
||||
n_samples,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MaterialTrait for CoatedConductorMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let mut iurough = tex_eval.evaluate_float(&self.interface_uroughness, ctx);
|
||||
let mut ivrough = tex_eval.evaluate_float(&self.interface_vroughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
iurough = TrowbridgeReitzDistribution::roughness_to_alpha(iurough);
|
||||
ivrough = TrowbridgeReitzDistribution::roughness_to_alpha(ivrough);
|
||||
}
|
||||
let interface_distrib = TrowbridgeReitzDistribution::new(iurough, ivrough);
|
||||
let thick = tex_eval.evaluate_float(&self.thickness, ctx);
|
||||
|
||||
let mut ieta = self.interface_eta.evaluate(lambda[0]);
|
||||
if self.interface_eta.is_constant() {
|
||||
let mut lambda = *lambda;
|
||||
lambda.terminate_secondary_inplace();
|
||||
}
|
||||
|
||||
if ieta == 0. {
|
||||
ieta = 1.;
|
||||
}
|
||||
|
||||
let (mut ce, mut ck) = if let Some(eta_tex) = &self.conductor_eta {
|
||||
let k_tex = self
|
||||
.k
|
||||
.as_ref()
|
||||
.expect("CoatedConductor: 'k' must be provided if 'conductor_eta' is present");
|
||||
let ce = tex_eval.evaluate_spectrum(eta_tex, ctx, lambda);
|
||||
let ck = tex_eval.evaluate_spectrum(k_tex, ctx, lambda);
|
||||
(ce, ck)
|
||||
} else {
|
||||
let r = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.reflectance, ctx, lambda),
|
||||
0.,
|
||||
0.9999,
|
||||
);
|
||||
let ce = SampledSpectrum::new(1.0);
|
||||
let one_minus_r = SampledSpectrum::new(1.) - r;
|
||||
let ck = 2. * r.sqrt() / SampledSpectrum::clamp_zero(&one_minus_r).sqrt();
|
||||
(ce, ck)
|
||||
};
|
||||
|
||||
ce /= ieta;
|
||||
ck /= ieta;
|
||||
|
||||
let mut curough = tex_eval.evaluate_float(&self.conductor_uroughness, ctx);
|
||||
let mut cvrough = tex_eval.evaluate_float(&self.conductor_vroughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
curough = TrowbridgeReitzDistribution::roughness_to_alpha(curough);
|
||||
cvrough = TrowbridgeReitzDistribution::roughness_to_alpha(cvrough);
|
||||
}
|
||||
|
||||
let conductor_distrib = TrowbridgeReitzDistribution::new(curough, cvrough);
|
||||
let a = SampledSpectrum::clamp(
|
||||
&tex_eval.evaluate_spectrum(&self.albedo, ctx, lambda),
|
||||
0.,
|
||||
1.,
|
||||
);
|
||||
|
||||
let gg = clamp(tex_eval.evaluate_float(&self.g, ctx), -1., 1.);
|
||||
let bxdf = BxDF::CoatedConductor(CoatedConductorBxDF::new(
|
||||
DielectricBxDF::new(ieta, interface_distrib),
|
||||
ConductorBxDF::new(&conductor_distrib, ce, ck),
|
||||
thick,
|
||||
a,
|
||||
gg,
|
||||
self.max_depth,
|
||||
self.n_samples,
|
||||
));
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
let float_textures = [
|
||||
self.interface_uroughness,
|
||||
self.interface_vroughness,
|
||||
self.thickness,
|
||||
self.g,
|
||||
self.conductor_uroughness,
|
||||
self.conductor_vroughness,
|
||||
];
|
||||
|
||||
let mut spectrum_textures = Vec::with_capacity(4);
|
||||
|
||||
spectrum_textures.push(&self.albedo);
|
||||
|
||||
if let Some(eta) = &self.conductor_eta {
|
||||
spectrum_textures.push(eta);
|
||||
}
|
||||
if let Some(k) = &self.k {
|
||||
spectrum_textures.push(k);
|
||||
}
|
||||
|
||||
if self.conductor_eta.is_none() {
|
||||
spectrum_textures.push(self.reflectance);
|
||||
}
|
||||
|
||||
tex_eval.can_evaluate(&float_textures, &spectrum_textures)
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
self.displacement
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
181
shared/src/materials/complex.rs
Normal file
181
shared/src/materials/complex.rs
Normal file
|
|
@ -0,0 +1,181 @@
|
|||
use crate::Float;
|
||||
use crate::core::bssrdf::{BSSRDF, BSSRDFTable};
|
||||
use crate::core::bxdf::{
|
||||
BSDF, BxDF, CoatedConductorBxDF, CoatedDiffuseBxDF, ConductorBxDF, DielectricBxDF, DiffuseBxDF,
|
||||
HairBxDF, MeasuredBxDF, MeasuredBxDFData,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::material::{Material, MaterialEvalContext, MaterialTrait};
|
||||
use crate::core::scattering::TrowbridgeReitzDistribution;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvaluator};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::textures::GPUSpectrumMixTexture;
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::math::clamp;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct HairMaterial {
|
||||
pub sigma_a: RelPtr<GPUSpectrumTexture>,
|
||||
pub color: RelPtr<GPUSpectrumTexture>,
|
||||
pub eumelanin: RelPtr<GPUFloatTexture>,
|
||||
pub pheomelanin: RelPtr<GPUFloatTexture>,
|
||||
pub eta: RelPtr<GPUFloatTexture>,
|
||||
pub beta_m: RelPtr<GPUFloatTexture>,
|
||||
pub beta_n: RelPtr<GPUFloatTexture>,
|
||||
pub alpha: RelPtr<GPUFloatTexture>,
|
||||
}
|
||||
|
||||
impl HairMaterial {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(
|
||||
sigma_a: RelPtr<GPUSpectrumTexture>,
|
||||
color: RelPtr<GPUSpectrumTexture>,
|
||||
eumelanin: RelPtr<GPUFloatTexture>,
|
||||
pheomelanin: RelPtr<GPUFloatTexture>,
|
||||
eta: RelPtr<GPUFloatTexture>,
|
||||
beta_m: RelPtr<GPUFloatTexture>,
|
||||
beta_n: RelPtr<GPUFloatTexture>,
|
||||
alpha: RelPtr<GPUFloatTexture>,
|
||||
) -> Self {
|
||||
Self {
|
||||
sigma_a,
|
||||
color,
|
||||
eumelanin,
|
||||
pheomelanin,
|
||||
eta,
|
||||
beta_m,
|
||||
beta_n,
|
||||
alpha,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MaterialTrait for HairMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
RelPtr::null()
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MeasuredMaterial {
|
||||
pub displacement: RelPtr<GPUFloatTexture>,
|
||||
pub normal_map: *const Image,
|
||||
pub brdf: *const MeasuredBxDFData,
|
||||
}
|
||||
|
||||
impl MaterialTrait for MeasuredMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
MeasuredBxDF::new(self.brdf, lambda)
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
self.displacement
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct SubsurfaceMaterial {
|
||||
pub displacement: RelPtr<GPUFloatTexture>,
|
||||
pub normal_map: *const Image,
|
||||
pub sigma_a: RelPtr<GPUSpectrumTexture>,
|
||||
pub sigma_s: RelPtr<GPUSpectrumMixTexture>,
|
||||
pub reflectance: RelPtr<GPUSpectrumMixTexture>,
|
||||
pub mfp: RelPtr<GPUSpectrumMixTexture>,
|
||||
pub eta: Float,
|
||||
pub scale: Float,
|
||||
pub u_roughness: RelPtr<GPUFloatTexture>,
|
||||
pub v_roughness: RelPtr<GPUFloatTexture>,
|
||||
pub remap_roughness: bool,
|
||||
pub table: BSSRDFTable,
|
||||
}
|
||||
|
||||
impl MaterialTrait for SubsurfaceMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
todo!()
|
||||
}
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
todo!()
|
||||
}
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
63
shared/src/materials/conductor.rs
Normal file
63
shared/src/materials/conductor.rs
Normal file
|
|
@ -0,0 +1,63 @@
|
|||
use crate::core::bssrdf::BSSRDF;
|
||||
use crate::core::bxdf::{
|
||||
BSDF, BxDF, CoatedConductorBxDF, CoatedDiffuseBxDF, ConductorBxDF, DielectricBxDF, DiffuseBxDF,
|
||||
HairBxDF,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::material::{Material, MaterialEvalContext, MaterialTrait};
|
||||
use crate::core::scattering::TrowbridgeReitzDistribution;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvaluator};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::math::clamp;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct ConductorMaterial {
|
||||
pub displacement: RelPtr<GPUFloatTexture>,
|
||||
pub eta: RelPtr<GPUSpectrumTexture>,
|
||||
pub k: RelPtr<GPUSpectrumTexture>,
|
||||
pub reflectance: RelPtr<GPUSpectrumTexture>,
|
||||
pub u_roughness: RelPtr<GPUFloatTexture>,
|
||||
pub v_roughness: RelPtr<GPUFloatTexture>,
|
||||
pub remap_roughness: bool,
|
||||
pub normal_map: *const Image,
|
||||
}
|
||||
|
||||
impl MaterialTrait for ConductorMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(
|
||||
&[self.u_roughness, self.v_roughness],
|
||||
&[self.eta, self.k, self.reflectance],
|
||||
)
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
122
shared/src/materials/dielectric.rs
Normal file
122
shared/src/materials/dielectric.rs
Normal file
|
|
@ -0,0 +1,122 @@
|
|||
use crate::core::bssrdf::BSSRDF;
|
||||
use crate::core::bxdf::{
|
||||
BSDF, BxDF, CoatedConductorBxDF, CoatedDiffuseBxDF, ConductorBxDF, DielectricBxDF, DiffuseBxDF,
|
||||
HairBxDF,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::material::{Material, MaterialEvalContext, MaterialTrait};
|
||||
use crate::core::scattering::TrowbridgeReitzDistribution;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvaluator};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::math::clamp;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct DielectricMaterial {
|
||||
normal_map: *const Image,
|
||||
displacement: GPUFloatTexture,
|
||||
u_roughness: GPUFloatTexture,
|
||||
v_roughness: GPUFloatTexture,
|
||||
remap_roughness: bool,
|
||||
eta: Spectrum,
|
||||
}
|
||||
|
||||
impl MaterialTrait for DielectricMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let mut sampled_eta = self.eta.evaluate(lambda[0]);
|
||||
if !self.eta.is_constant() {
|
||||
lambda.terminate_secondary();
|
||||
}
|
||||
|
||||
if sampled_eta == 0.0 {
|
||||
sampled_eta = 1.0;
|
||||
}
|
||||
|
||||
let mut u_rough = tex_eval.evaluate_float(&self.u_roughness, ctx);
|
||||
let mut v_rough = tex_eval.evaluate_float(&self.v_roughness, ctx);
|
||||
|
||||
if self.remap_roughness {
|
||||
u_rough = TrowbridgeReitzDistribution::roughness_to_alpha(u_rough);
|
||||
v_rough = TrowbridgeReitzDistribution::roughness_to_alpha(v_rough);
|
||||
}
|
||||
|
||||
let distrib = TrowbridgeReitzDistribution::new(u_rough, v_rough);
|
||||
let bxdf = BxDF::Dielectric(DielectricBxDF::new(sampled_eta, distrib));
|
||||
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(&[self.u_roughness, self.v_roughness], &[])
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
self.displacement
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct ThinDielectricMaterial {
|
||||
pub displacement: RelPtr<GPUFloatTexture>,
|
||||
pub normal_map: *const Image,
|
||||
pub eta: RelPtr<Spectrum>,
|
||||
}
|
||||
impl MaterialTrait for ThinDielectricMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, _tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
self.displacement
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
105
shared/src/materials/diffuse.rs
Normal file
105
shared/src/materials/diffuse.rs
Normal file
|
|
@ -0,0 +1,105 @@
|
|||
use crate::Float;
|
||||
use crate::core::bssrdf::BSSRDF;
|
||||
use crate::core::bxdf::{
|
||||
BSDF, BxDF, CoatedConductorBxDF, CoatedDiffuseBxDF, ConductorBxDF, DielectricBxDF, DiffuseBxDF,
|
||||
HairBxDF,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::material::{Material, MaterialEvalContext, MaterialTrait};
|
||||
use crate::core::scattering::TrowbridgeReitzDistribution;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvaluator};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::math::clamp;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct DiffuseMaterial {
|
||||
pub normal_map: *const Image,
|
||||
pub displacement: RelPtr<GPUFloatTexture>,
|
||||
pub reflectance: RelPtr<GPUSpectrumTexture>,
|
||||
}
|
||||
|
||||
impl MaterialTrait for DiffuseMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
let r = tex_eval.evaluate_spectrum(&self.reflectance, ctx, lambda);
|
||||
let bxdf = BxDF::Diffuse(DiffuseBxDF::new(r));
|
||||
BSDF::new(ctx.ns, ctx.dpdus, Some(bxdf))
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(&[], &[self.reflectance])
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
self.displacement
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct DiffuseTransmissionMaterial {
|
||||
pub displacement: RelPtr<GPUFloatTexture>,
|
||||
pub image: *const Image,
|
||||
pub reflectance: RelPtr<GPUFloatTexture>,
|
||||
pub transmittance: RelPtr<GPUFloatTexture>,
|
||||
pub scale: Float,
|
||||
}
|
||||
|
||||
impl MaterialTrait for DiffuseTransmissionMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
todo!()
|
||||
}
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(&[], &[self.reflectance, self.transmittance])
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
self.normal_map
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
self.displacement
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
85
shared/src/materials/mix.rs
Normal file
85
shared/src/materials/mix.rs
Normal file
|
|
@ -0,0 +1,85 @@
|
|||
use crate::core::bssrdf::BSSRDF;
|
||||
use crate::core::bxdf::{
|
||||
BSDF, BxDF, CoatedConductorBxDF, CoatedDiffuseBxDF, ConductorBxDF, DielectricBxDF, DiffuseBxDF,
|
||||
HairBxDF,
|
||||
};
|
||||
use crate::core::image::Image;
|
||||
use crate::core::material::{Material, MaterialEvalContext, MaterialTrait};
|
||||
use crate::core::scattering::TrowbridgeReitzDistribution;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvaluator};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::hash::hash_float;
|
||||
use crate::utils::math::clamp;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MixMaterial {
|
||||
pub amount: RelPtr<GPUFloatTexture>,
|
||||
pub materials: [RelPtr<Material>; 2],
|
||||
}
|
||||
|
||||
impl MixMaterial {
|
||||
pub fn choose_material<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
) -> Option<&Material> {
|
||||
let amt = tex_eval.evaluate_float(&self.amount, ctx);
|
||||
|
||||
let index = if amt <= 0.0 {
|
||||
0
|
||||
} else if amt >= 1.0 {
|
||||
1
|
||||
} else {
|
||||
let u = hash_float(&(ctx.p, ctx.wo));
|
||||
if amt < u { 0 } else { 1 }
|
||||
};
|
||||
|
||||
self.materials[index].get()
|
||||
}
|
||||
}
|
||||
|
||||
impl MaterialTrait for MixMaterial {
|
||||
fn get_bsdf<T: TextureEvaluator>(
|
||||
&self,
|
||||
tex_eval: &T,
|
||||
ctx: &MaterialEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> BSDF {
|
||||
if let Some(mat) = self.choose_material(tex_eval, ctx) {
|
||||
mat.get_bsdf(tex_eval, ctx, lambda)
|
||||
} else {
|
||||
BSDF::empty()
|
||||
}
|
||||
}
|
||||
|
||||
fn get_bssrdf<T>(
|
||||
&self,
|
||||
_tex_eval: &T,
|
||||
_ctx: &MaterialEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
) -> Option<BSSRDF> {
|
||||
None
|
||||
}
|
||||
|
||||
fn can_evaluate_textures(&self, tex_eval: &dyn TextureEvaluator) -> bool {
|
||||
tex_eval.can_evaluate(&[self.amount], &[])
|
||||
}
|
||||
|
||||
fn get_normal_map(&self) -> *const Image {
|
||||
core::ptr::null()
|
||||
}
|
||||
|
||||
fn get_displacement(&self) -> RelPtr<GPUFloatTexture> {
|
||||
panic!(
|
||||
"MixMaterial::get_displacement() shouldn't be called. \
|
||||
Displacement is not supported on Mix materials directly."
|
||||
);
|
||||
}
|
||||
|
||||
fn has_subsurface_scattering(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
13
shared/src/materials/mod.rs
Normal file
13
shared/src/materials/mod.rs
Normal file
|
|
@ -0,0 +1,13 @@
|
|||
pub mod coated;
|
||||
pub mod complex;
|
||||
pub mod conductor;
|
||||
pub mod dielectric;
|
||||
pub mod diffuse;
|
||||
pub mod mix;
|
||||
|
||||
pub use coated::*;
|
||||
pub use complex::*;
|
||||
pub use conductor::*;
|
||||
pub use dielectric::*;
|
||||
pub use diffuse::*;
|
||||
pub use mix::*;
|
||||
|
|
@ -1,58 +1,130 @@
|
|||
use super::{
|
||||
BilinearIntersection, BilinearPatchShape, Bounds3f, DirectionCone, Interaction, Normal3f,
|
||||
Point2f, Point3f, Point3fi, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext,
|
||||
ShapeTrait, SurfaceInteraction, Transform, Vector3f,
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal, Normal3f, Point2f, Point3f, Point3fi, Ray, Tuple, Vector3f,
|
||||
VectorLike, spherical_quad_area,
|
||||
};
|
||||
use crate::core::geometry::{Tuple, VectorLike, spherical_quad_area};
|
||||
use crate::core::interaction::InteractionTrait;
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
|
||||
use crate::core::pbrt::{Float, gamma};
|
||||
use crate::core::shape::{Shape, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait};
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::math::{SquareMatrix, clamp, difference_of_products, lerp, quadratic};
|
||||
use crate::utils::mesh::BilinearPatchMesh;
|
||||
use crate::utils::sampling::{
|
||||
bilinear_pdf, invert_spherical_rectangle_sample, sample_bilinear, sample_spherical_rectangle,
|
||||
};
|
||||
use std::sync::Arc;
|
||||
use std::sync::OnceLock;
|
||||
|
||||
struct PatchData<'a> {
|
||||
mesh: &'a BilinearPatchMesh,
|
||||
p00: Point3f,
|
||||
p10: Point3f,
|
||||
p01: Point3f,
|
||||
p11: Point3f,
|
||||
n: Option<[Normal3f; 4]>,
|
||||
uv: Option<[Point2f; 4]>,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
struct IntersectionData {
|
||||
t: Float,
|
||||
u: Float,
|
||||
v: Float,
|
||||
pub t: Float,
|
||||
pub u: Float,
|
||||
pub v: Float,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default, Copy, Clone)]
|
||||
struct TextureDerivative {
|
||||
duds: Float,
|
||||
dvds: Float,
|
||||
dudt: Float,
|
||||
dvdt: Float,
|
||||
pub duds: Float,
|
||||
pub dvds: Float,
|
||||
pub dudt: Float,
|
||||
pub dvdt: Float,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct BilinearIntersection {
|
||||
pub uv: Point2f,
|
||||
pub t: Float,
|
||||
}
|
||||
|
||||
impl BilinearIntersection {
|
||||
pub fn new(uv: Point2f, t: Float) -> Self {
|
||||
Self { uv, t }
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct BilinearPatchShape {
|
||||
pub mesh: BilinearPatchMesh,
|
||||
pub blp_index: u32,
|
||||
pub area: Float,
|
||||
pub rectangle: bool,
|
||||
}
|
||||
|
||||
static BILINEAR_MESHES: OnceLock<Vec<Arc<BilinearPatchMesh>>> = OnceLock::new();
|
||||
impl BilinearPatchShape {
|
||||
pub const MIN_SPHERICAL_SAMPLE_AREA: Float = 1e-4;
|
||||
fn mesh(&self) -> BilinearPatchMesh {
|
||||
self.mesh
|
||||
}
|
||||
|
||||
pub fn new(_mesh: BilinearPatchMesh, mesh_index: usize, blp_index: usize) -> Self {
|
||||
#[inline(always)]
|
||||
fn get_vertex_indices(&self) -> [usize; 4] {
|
||||
unsafe {
|
||||
let base_ptr = self.mesh.vertex_indices.add((self.blp_index as usize) * 4);
|
||||
[
|
||||
*base_ptr.add(0) as usize,
|
||||
*base_ptr.add(1) as usize,
|
||||
*base_ptr.add(2) as usize,
|
||||
*base_ptr.add(3) as usize,
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_points(&self) -> [Point3f; 4] {
|
||||
let [v0, v1, v2, v3] = self.get_vertex_indices();
|
||||
unsafe {
|
||||
[
|
||||
*self.mesh.p.0.add(v0),
|
||||
*self.mesh.p.0.add(v1),
|
||||
*self.mesh.p.0.add(v2),
|
||||
*self.mesh.p.0.add(v3),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_uvs(&self) -> Option<[Point2f; 4]> {
|
||||
if self.mesh.uv.is_null() {
|
||||
return None;
|
||||
}
|
||||
let [v0, v1, v2, v3] = self.get_vertex_indices();
|
||||
unsafe {
|
||||
Some([
|
||||
*self.mesh.uv.0.add(v0),
|
||||
*self.mesh.uv.0.add(v1),
|
||||
*self.mesh.uv.0.add(v2),
|
||||
*self.mesh.uv.0.add(v3),
|
||||
])
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_shading_normals(&self) -> Option<[Normal3f; 4]> {
|
||||
if self.mesh.n.is_null() {
|
||||
return None;
|
||||
}
|
||||
let [v0, v1, v2, v3] = self.get_vertex_indices();
|
||||
unsafe {
|
||||
Some([
|
||||
*self.mesh.n.0.add(v0),
|
||||
*self.mesh.n.0.add(v1),
|
||||
*self.mesh.n.0.add(v2),
|
||||
*self.mesh.n.0.add(v3),
|
||||
])
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(mesh: BilinearPatchMesh, blp_index: u32) -> Self {
|
||||
let mut bp = BilinearPatchShape {
|
||||
mesh_index,
|
||||
mesh,
|
||||
blp_index,
|
||||
area: 0.,
|
||||
rectangle: false,
|
||||
};
|
||||
|
||||
let (p00, p10, p01, p11) = {
|
||||
let data = bp.get_data();
|
||||
(data.p00, data.p10, data.p01, data.p11)
|
||||
};
|
||||
let [p00, p10, p01, p11] = bp.get_points();
|
||||
|
||||
bp.rectangle = bp.is_rectangle(p00, p10, p01, p11);
|
||||
|
||||
|
|
@ -84,40 +156,6 @@ impl BilinearPatchShape {
|
|||
bp
|
||||
}
|
||||
|
||||
fn mesh(&self) -> &Arc<BilinearPatchMesh> {
|
||||
let meshes = BILINEAR_MESHES
|
||||
.get()
|
||||
.expect("Mesh has not been initialized");
|
||||
&meshes[self.mesh_index]
|
||||
}
|
||||
|
||||
fn get_data(&self) -> PatchData<'_> {
|
||||
let mesh = self.mesh();
|
||||
let start_index = 4 * self.blp_index;
|
||||
let v = &mesh.vertex_indices[start_index..start_index + 4];
|
||||
let p00: Point3f = mesh.p[v[0]];
|
||||
let p10: Point3f = mesh.p[v[1]];
|
||||
let p01: Point3f = mesh.p[v[2]];
|
||||
let p11: Point3f = mesh.p[v[3]];
|
||||
let n = mesh
|
||||
.n
|
||||
.as_ref()
|
||||
.map(|normals| [normals[v[0]], normals[v[1]], normals[v[2]], normals[v[3]]]);
|
||||
let uv = mesh
|
||||
.uv
|
||||
.as_ref()
|
||||
.map(|uvs| [uvs[v[0]], uvs[v[1]], uvs[v[2]], uvs[v[3]]]);
|
||||
PatchData {
|
||||
mesh,
|
||||
p00,
|
||||
p10,
|
||||
p01,
|
||||
p11,
|
||||
n,
|
||||
uv,
|
||||
}
|
||||
}
|
||||
|
||||
fn is_rectangle(&self, p00: Point3f, p10: Point3f, p01: Point3f, p11: Point3f) -> bool {
|
||||
if p00 == p01 || p01 == p11 || p11 == p10 || p10 == p00 {
|
||||
return false;
|
||||
|
|
@ -149,25 +187,26 @@ impl BilinearPatchShape {
|
|||
&self,
|
||||
ray: &Ray,
|
||||
t_max: Float,
|
||||
data: &PatchData,
|
||||
corners: &[Point3f; 4],
|
||||
) -> Option<BilinearIntersection> {
|
||||
let a = (data.p10 - data.p00).cross(data.p01 - data.p11).dot(ray.d);
|
||||
let c = (data.p00 - ray.o).cross(ray.d).dot(data.p01 - data.p00);
|
||||
let b = (data.p10 - ray.o).cross(ray.d).dot(data.p11 - data.p10) - (a + c);
|
||||
let &[p00, p01, p10, p11] = corners;
|
||||
let a = (p10 - p00).cross(p01 - p11).dot(ray.d);
|
||||
let c = (p00 - ray.o).cross(ray.d).dot(p01 - p00);
|
||||
let b = (p10 - ray.o).cross(ray.d).dot(p11 - p10) - (a + c);
|
||||
|
||||
let (u1, u2) = quadratic(a, b, c)?;
|
||||
|
||||
let eps = gamma(10)
|
||||
* (ray.o.abs().max_component_value()
|
||||
+ ray.d.abs().max_component_value()
|
||||
+ data.p00.abs().max_component_value()
|
||||
+ data.p10.abs().max_component_value()
|
||||
+ data.p01.abs().max_component_value()
|
||||
+ data.p11.abs().max_component_value());
|
||||
+ p00.abs().max_component_value()
|
||||
+ p10.abs().max_component_value()
|
||||
+ p01.abs().max_component_value()
|
||||
+ p11.abs().max_component_value());
|
||||
|
||||
let hit1 = self.check_candidate(u1, ray, data);
|
||||
let hit1 = self.check_candidate(u1, ray, corners);
|
||||
let hit2 = if u1 != u2 {
|
||||
self.check_candidate(u2, ray, data)
|
||||
self.check_candidate(u2, ray, corners)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
|
@ -183,12 +222,18 @@ impl BilinearPatchShape {
|
|||
})
|
||||
}
|
||||
|
||||
fn check_candidate(&self, u: Float, ray: &Ray, data: &PatchData) -> Option<IntersectionData> {
|
||||
fn check_candidate(
|
||||
&self,
|
||||
u: Float,
|
||||
ray: &Ray,
|
||||
corners: &[Point3f; 4],
|
||||
) -> Option<IntersectionData> {
|
||||
if !(0.0..=1.0).contains(&u) {
|
||||
return None;
|
||||
}
|
||||
let uo: Point3f = lerp(u, data.p00, data.p10);
|
||||
let ud: Point3f = Point3f::from(lerp(u, data.p01, data.p11) - uo);
|
||||
let &[p00, p01, p10, p11] = corners;
|
||||
let uo: Point3f = lerp(u, p00, p10);
|
||||
let ud: Point3f = Point3f::from(lerp(u, p01, p11) - uo);
|
||||
let deltao = uo - ray.o;
|
||||
let perp = ray.d.cross(ud.into());
|
||||
let p2 = perp.norm_squared();
|
||||
|
|
@ -222,26 +267,25 @@ impl BilinearPatchShape {
|
|||
|
||||
fn interaction_from_intersection(
|
||||
&self,
|
||||
data: &PatchData,
|
||||
uv: Point2f,
|
||||
time: Float,
|
||||
wo: Vector3f,
|
||||
) -> SurfaceInteraction {
|
||||
// Base geom and derivatives
|
||||
let p = lerp(
|
||||
uv[0],
|
||||
lerp(uv[1], data.p00, data.p01),
|
||||
lerp(uv[1], data.p10, data.p11),
|
||||
);
|
||||
let mut dpdu = lerp(uv[1], data.p10, data.p11) - lerp(uv[1], data.p00, data.p01);
|
||||
let mut dpdv = lerp(uv[0], data.p01, data.p11) - lerp(uv[0], data.p00, data.p10);
|
||||
let corners = self.get_points();
|
||||
let [p00, p01, p10, p11] = corners;
|
||||
let p = lerp(uv[0], lerp(uv[1], p00, p01), lerp(uv[1], p10, p11));
|
||||
let mut dpdu = lerp(uv[1], p10, p11) - lerp(uv[1], p00, p01);
|
||||
let mut dpdv = lerp(uv[0], p01, p11) - lerp(uv[0], p00, p10);
|
||||
|
||||
// If textured, apply coordinates
|
||||
let (st, derivatives) = self.apply_texture_coordinates(data, uv, &mut dpdu, &mut dpdv);
|
||||
let patch_uvs = self.get_uvs();
|
||||
let (st, derivatives) =
|
||||
self.apply_texture_coordinates(uv, patch_uvs.try_into().unwrap(), &mut dpdu, &mut dpdv);
|
||||
|
||||
// Compute second moments
|
||||
let n = Normal3f::from(dpdu.cross(dpdv).normalize());
|
||||
let (mut dndu, mut dndv) = self.calculate_surface_curvature(data, &dpdu, &dpdv, n);
|
||||
let (mut dndu, mut dndv) = self.calculate_surface_curvature(&corners, &dpdu, &dpdv, n);
|
||||
if let Some(ref deriv) = derivatives {
|
||||
let dnds = Normal3f::from(dndu * deriv.duds + dndv * deriv.dvds);
|
||||
let dndt = Normal3f::from(dndu * deriv.dudt + dndv * deriv.dvdt);
|
||||
|
|
@ -249,31 +293,31 @@ impl BilinearPatchShape {
|
|||
dndv = dndt;
|
||||
}
|
||||
|
||||
let p_abs_sum = data.p00.abs()
|
||||
+ Vector3f::from(data.p01.abs())
|
||||
+ Vector3f::from(data.p10.abs())
|
||||
+ Vector3f::from(data.p11.abs());
|
||||
let p_abs_sum = p00.abs()
|
||||
+ Vector3f::from(p01.abs())
|
||||
+ Vector3f::from(p10.abs())
|
||||
+ Vector3f::from(p11.abs());
|
||||
let p_error = gamma(6) * Vector3f::from(p_abs_sum);
|
||||
|
||||
let flip_normal = data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness;
|
||||
let flip_normal = self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness;
|
||||
let pi = Point3fi::new_with_error(p, p_error);
|
||||
let mut isect =
|
||||
SurfaceInteraction::new(pi, st, wo, dpdu, dpdv, dndu, dndv, time, flip_normal);
|
||||
if data.n.is_some() {
|
||||
self.apply_shading_normals(&mut isect, data, uv, derivatives);
|
||||
}
|
||||
|
||||
self.apply_shading_normals(&mut isect, self.get_shading_normals(), uv, derivatives);
|
||||
isect
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn apply_texture_coordinates(
|
||||
&self,
|
||||
data: &PatchData,
|
||||
uv: Point2f,
|
||||
patch_uvs: Option<[Point2f; 4]>,
|
||||
dpdu: &mut Vector3f,
|
||||
dpdv: &mut Vector3f,
|
||||
) -> (Point2f, Option<TextureDerivative>) {
|
||||
let Some(uvs) = data.uv else {
|
||||
return (uv, None);
|
||||
let Some(uvs) = patch_uvs else {
|
||||
return (uv, TextureDerivative::default());
|
||||
};
|
||||
let uv00 = uvs[0];
|
||||
let uv01 = uvs[1];
|
||||
|
|
@ -297,6 +341,7 @@ impl BilinearPatchShape {
|
|||
if dpdu.cross(*dpdv).dot(dpds.cross(dpdt)) < 0. {
|
||||
dpdt = -dpdt;
|
||||
}
|
||||
|
||||
*dpdu = dpds;
|
||||
*dpdv = dpdt;
|
||||
|
||||
|
|
@ -309,32 +354,33 @@ impl BilinearPatchShape {
|
|||
(st, Some(factors))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn calculate_base_derivatives(
|
||||
&self,
|
||||
data: &PatchData,
|
||||
corners: &[Point3f; 4],
|
||||
uv: Point2f,
|
||||
) -> (Point3f, Vector3f, Vector3f) {
|
||||
let p = lerp(
|
||||
uv[0],
|
||||
lerp(uv[1], data.p00, data.p01),
|
||||
lerp(uv[1], data.p10, data.p11),
|
||||
);
|
||||
let dpdu = lerp(uv[1], data.p10, data.p11) - lerp(uv[1], data.p00, data.p01);
|
||||
let dpdv = lerp(uv[0], data.p01, data.p11) - lerp(uv[0], data.p00, data.p10);
|
||||
let (p00, p10, p01, p11) = (corners[0], corners[1], corners[2], corners[3]);
|
||||
|
||||
let p = lerp(uv[0], lerp(uv[1], p00, p01), lerp(uv[1], p10, p11));
|
||||
let dpdu = lerp(uv[1], p10, p11) - lerp(uv[1], p00, p01);
|
||||
let dpdv = lerp(uv[0], p01, p11) - lerp(uv[0], p00, p10);
|
||||
(p, dpdu, dpdv)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn calculate_surface_curvature(
|
||||
&self,
|
||||
data: &PatchData,
|
||||
corners: &[Point3f; 4],
|
||||
dpdu: &Vector3f,
|
||||
dpdv: &Vector3f,
|
||||
n: Normal3f,
|
||||
) -> (Normal3f, Normal3f) {
|
||||
let (p00, p10, p01, p11) = (corners[0], corners[1], corners[2], corners[3]);
|
||||
let e = dpdu.dot(*dpdu);
|
||||
let f = dpdu.dot(*dpdv);
|
||||
let g = dpdv.dot(*dpdv);
|
||||
let d2pduv = (data.p00 - data.p01) + (data.p11 - data.p10);
|
||||
let d2pduv = (p00 - p01) + (p11 - p10);
|
||||
let d2pduu = Vector3f::zero();
|
||||
let d2pdvv = Vector3f::zero();
|
||||
|
||||
|
|
@ -357,11 +403,13 @@ impl BilinearPatchShape {
|
|||
fn apply_shading_normals(
|
||||
&self,
|
||||
isect: &mut SurfaceInteraction,
|
||||
data: &PatchData,
|
||||
shading_normals: Option<[Normal3f; 4]>,
|
||||
uv: Point2f,
|
||||
derivatives: Option<TextureDerivative>,
|
||||
) {
|
||||
let Some(normals) = data.n else { return };
|
||||
let Some(normals) = shading_normals else {
|
||||
return;
|
||||
};
|
||||
let n00 = normals[1];
|
||||
let n10 = normals[1];
|
||||
let n01 = normals[2];
|
||||
|
|
@ -390,10 +438,7 @@ impl BilinearPatchShape {
|
|||
|
||||
fn sample_area_and_pdf(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
||||
let mut ss = self.sample(u)?;
|
||||
|
||||
let mut intr_clone = (*ss.intr).clone();
|
||||
intr_clone.common.time = ctx.time;
|
||||
ss.intr = Arc::new(intr_clone);
|
||||
ss.intr.get_common_mut().time = ctx.time;
|
||||
|
||||
let mut wi = ss.intr.p() - ctx.p();
|
||||
let dist_sq = wi.norm_squared();
|
||||
|
|
@ -412,16 +457,18 @@ impl BilinearPatchShape {
|
|||
if ss.pdf.is_infinite() { None } else { Some(ss) }
|
||||
}
|
||||
|
||||
fn sample_parametric_coords(&self, data: &PatchData, u: Point2f) -> (Point2f, Float) {
|
||||
if let Some(image_distrib) = &data.mesh.image_distribution {
|
||||
fn sample_parametric_coords(&self, corners: &[Point3f; 4], u: Point2f) -> (Point2f, Float) {
|
||||
let (p00, p10, p01, p11) = (corners[0], corners[1], corners[2], corners[3]);
|
||||
if !self.mesh.image_distribution.is_null() {
|
||||
let image_distrib = self.mesh.image_distribution;
|
||||
let (uv, pdf, _) = image_distrib.sample(u);
|
||||
(uv, pdf)
|
||||
} else if !self.rectangle {
|
||||
let w = [
|
||||
(data.p10 - data.p00).cross(data.p01 - data.p00).norm(),
|
||||
(data.p10 - data.p00).cross(data.p11 - data.p10).norm(),
|
||||
(data.p01 - data.p00).cross(data.p11 - data.p01).norm(),
|
||||
(data.p11 - data.p10).cross(data.p11 - data.p01).norm(),
|
||||
(p10 - p00).cross(p01 - p00).norm(),
|
||||
(p10 - p00).cross(p11 - p10).norm(),
|
||||
(p01 - p00).cross(p11 - p01).norm(),
|
||||
(p11 - p10).cross(p11 - p01).norm(),
|
||||
];
|
||||
let uv = sample_bilinear(u, &w);
|
||||
let pdf = bilinear_pdf(uv, &w);
|
||||
|
|
@ -433,11 +480,12 @@ impl BilinearPatchShape {
|
|||
|
||||
fn sample_solid_angle(
|
||||
&self,
|
||||
data: &PatchData,
|
||||
corners: &[Point3f; 4],
|
||||
ctx: &ShapeSampleContext,
|
||||
u: Point2f,
|
||||
corner_dirs: &[Vector3f; 4],
|
||||
) -> Option<ShapeSample> {
|
||||
let (p00, p10, p01, p11) = (corners[0], corners[1], corners[2], corners[3]);
|
||||
let mut pdf = 1.;
|
||||
if ctx.ns != Normal3f::zero() {
|
||||
let w = [
|
||||
|
|
@ -450,19 +498,21 @@ impl BilinearPatchShape {
|
|||
pdf *= bilinear_pdf(u, &w);
|
||||
}
|
||||
|
||||
let eu = data.p10 - data.p00;
|
||||
let ev = data.p01 - data.p00;
|
||||
let (p, quad_pdf) = sample_spherical_rectangle(ctx.p(), data.p00, eu, ev, u);
|
||||
let eu = p10 - p00;
|
||||
let ev = p01 - p00;
|
||||
let (p, quad_pdf) = sample_spherical_rectangle(ctx.p(), p00, eu, ev, u);
|
||||
pdf *= quad_pdf?;
|
||||
|
||||
// Compute (u, v) and surface normal for sampled points on rectangle
|
||||
let uv = Point2f::new(
|
||||
(p - data.p00).dot(eu) / data.p10.distance_squared(data.p00),
|
||||
(p - data.p00).dot(ev) / data.p01.distance_squared(data.p00),
|
||||
(p - p00).dot(eu) / p10.distance_squared(p00),
|
||||
(p - p00).dot(ev) / p01.distance_squared(p00),
|
||||
);
|
||||
|
||||
let n = self.compute_sampled_normal(data, &eu, &ev, uv);
|
||||
let st = data.uv.map_or(uv, |uvs| {
|
||||
let patch_uvs = self.get_uvs();
|
||||
let patch_normals = self.get_shading_normals();
|
||||
let n = self.compute_sampled_normal(patch_normals, &eu, &ev, uv);
|
||||
let st = patch_uvs.map_or(uv, |uvs| {
|
||||
lerp(
|
||||
uv[0],
|
||||
lerp(uv[1], uvs[0], uvs[1]),
|
||||
|
|
@ -474,29 +524,29 @@ impl BilinearPatchShape {
|
|||
let mut intr = SurfaceInteraction::new_simple(pi, n, st);
|
||||
intr.common.time = ctx.time;
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(intr),
|
||||
intr: Interaction::Surface(intr),
|
||||
pdf,
|
||||
})
|
||||
}
|
||||
|
||||
fn compute_sampled_normal(
|
||||
&self,
|
||||
data: &PatchData,
|
||||
patch_normals: Option<[Normal3f; 4]>,
|
||||
dpdu: &Vector3f,
|
||||
dpdv: &Vector3f,
|
||||
uv: Point2f,
|
||||
) -> Normal3f {
|
||||
let mut n = Normal3f::from(dpdu.cross(*dpdv).normalize());
|
||||
|
||||
if let Some(normals) = data.n {
|
||||
if let Some(normals) = patch_normals {
|
||||
// Apply interpolated shading normal to orient the geometric normal
|
||||
let ns = lerp(
|
||||
uv[0],
|
||||
lerp(uv[1], normals[0], normals[2]),
|
||||
lerp(uv[1], normals[1], normals[3]),
|
||||
);
|
||||
n = n.face_forward(ns.into());
|
||||
} else if data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness {
|
||||
n = n.face_forward(ns);
|
||||
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
||||
n = -n;
|
||||
}
|
||||
n
|
||||
|
|
@ -511,36 +561,33 @@ impl ShapeTrait for BilinearPatchShape {
|
|||
|
||||
#[inline]
|
||||
fn normal_bounds(&self) -> DirectionCone {
|
||||
let data = self.get_data();
|
||||
if data.p00 == data.p10
|
||||
|| data.p10 == data.p11
|
||||
|| data.p11 == data.p01
|
||||
|| data.p01 == data.p00
|
||||
{
|
||||
let dpdu = lerp(0.5, data.p10, data.p11) - lerp(0.5, data.p00, data.p01);
|
||||
let dpdv = lerp(0.5, data.p01, data.p11) - lerp(0.5, data.p00, data.p10);
|
||||
let [p00, p01, p10, p11] = self.get_points();
|
||||
let normals = self.get_shading_normals();
|
||||
if p00 == p10 || p10 == p11 || p11 == p01 || p01 == p00 {
|
||||
let dpdu = lerp(0.5, p10, p11) - lerp(0.5, p00, p01);
|
||||
let dpdv = lerp(0.5, p01, p11) - lerp(0.5, p00, p10);
|
||||
let mut n = Normal3f::from(dpdu.cross(dpdv).normalize());
|
||||
if let Some(normals) = data.n {
|
||||
if let Some(normals) = normals {
|
||||
let interp_n = (normals[0] + normals[1] + normals[2] + normals[3]) / 4.;
|
||||
n = n.face_forward(interp_n.into());
|
||||
} else if data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness {
|
||||
n = n.face_forward(interp_n);
|
||||
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
||||
n *= -1.;
|
||||
}
|
||||
return DirectionCone::new_from_vector(Vector3f::from(n));
|
||||
}
|
||||
|
||||
// Compute bilinear patch normals n10, n01, and n11
|
||||
let mut n00 = Normal3f::from((data.p10 - data.p00).cross(data.p01 - data.p00).normalize());
|
||||
let mut n10 = Normal3f::from((data.p11 - data.p10).cross(data.p00 - data.p10).normalize());
|
||||
let mut n01 = Normal3f::from((data.p00 - data.p01).cross(data.p11 - data.p01).normalize());
|
||||
let mut n11 = Normal3f::from((data.p01 - data.p11).cross(data.p10 - data.p11).normalize());
|
||||
let mut n00 = Normal3f::from((p10 - p00).cross(p01 - p00).normalize());
|
||||
let mut n10 = Normal3f::from((p11 - p10).cross(p00 - p10).normalize());
|
||||
let mut n01 = Normal3f::from((p00 - p01).cross(p11 - p01).normalize());
|
||||
let mut n11 = Normal3f::from((p01 - p11).cross(p10 - p11).normalize());
|
||||
|
||||
if let Some(normals) = data.n {
|
||||
n00 = n00.face_forward(normals[0].into());
|
||||
n10 = n10.face_forward(normals[1].into());
|
||||
n01 = n01.face_forward(normals[2].into());
|
||||
n11 = n11.face_forward(normals[3].into());
|
||||
} else if data.mesh.reverse_orientation ^ data.mesh.transform_swaps_handedness {
|
||||
if let Some(normals) = normals {
|
||||
n00 = n00.face_forward(normals[0]);
|
||||
n10 = n10.face_forward(normals[1]);
|
||||
n01 = n01.face_forward(normals[2]);
|
||||
n11 = n11.face_forward(normals[3]);
|
||||
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
||||
n00 = -n00;
|
||||
n10 = -n10;
|
||||
n01 = -n01;
|
||||
|
|
@ -559,16 +606,17 @@ impl ShapeTrait for BilinearPatchShape {
|
|||
|
||||
#[inline]
|
||||
fn bounds(&self) -> Bounds3f {
|
||||
let data = self.get_data();
|
||||
Bounds3f::from_points(data.p00, data.p01).union(Bounds3f::from_points(data.p10, data.p11))
|
||||
let [p00, p01, p10, p11] = self.get_points();
|
||||
Bounds3f::from_points(p00, p01).union(Bounds3f::from_points(p10, p11))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn intersect(&self, ray: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection> {
|
||||
let t_max_val = t_max?;
|
||||
let data = self.get_data();
|
||||
if let Some(bilinear_hit) = self.intersect_bilinear_patch(ray, t_max_val, &data) {
|
||||
let intr = self.interaction_from_intersection(&data, bilinear_hit.uv, ray.time, -ray.d);
|
||||
if let Some(bilinear_hit) =
|
||||
self.intersect_bilinear_patch(ray, t_max_val, &self.get_points())
|
||||
{
|
||||
let intr = self.interaction_from_intersection(bilinear_hit.uv, ray.time, -ray.d);
|
||||
|
||||
Some(ShapeIntersection {
|
||||
intr,
|
||||
|
|
@ -582,25 +630,28 @@ impl ShapeTrait for BilinearPatchShape {
|
|||
#[inline]
|
||||
fn intersect_p(&self, ray: &Ray, t_max: Option<Float>) -> bool {
|
||||
let t_max_val = t_max.unwrap_or(Float::INFINITY);
|
||||
let data = self.get_data();
|
||||
self.intersect_bilinear_patch(ray, t_max_val, &data)
|
||||
let corners = self.get_points();
|
||||
self.intersect_bilinear_patch(ray, t_max_val, &corners)
|
||||
.is_some()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sample(&self, u: Point2f) -> Option<ShapeSample> {
|
||||
let data = self.get_data();
|
||||
let corners = self.get_points();
|
||||
let [p00, p01, p10, p11] = corners;
|
||||
// Sample bilinear patch parametric coordinate (u, v)
|
||||
let (uv, pdf) = self.sample_parametric_coords(&data, u);
|
||||
let (uv, pdf) = self.sample_parametric_coords(&corners, u);
|
||||
// Compute bilinear patch geometric quantities at sampled (u, v)
|
||||
let (p, dpdu, dpdv) = self.calculate_base_derivatives(&data, uv);
|
||||
let (p, dpdu, dpdv) = self.calculate_base_derivatives(&corners, uv);
|
||||
if dpdu.norm_squared() == 0. || dpdv.norm_squared() == 0. {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Compute surface normal for sampled bilinear patch (u, v)
|
||||
let n = self.compute_sampled_normal(&data, &dpdu, &dpdv, uv);
|
||||
let st = data.uv.map_or(uv, |patch_uvs| {
|
||||
let patch_normals = self.get_shading_normals();
|
||||
let patch_uvs = self.get_uvs();
|
||||
let n = self.compute_sampled_normal(patch_normals, &dpdu, &dpdv, uv);
|
||||
let st = patch_uvs.map_or(uv, |patch_uvs| {
|
||||
lerp(
|
||||
uv[0],
|
||||
lerp(uv[1], patch_uvs[0], patch_uvs[1]),
|
||||
|
|
@ -608,33 +659,34 @@ impl ShapeTrait for BilinearPatchShape {
|
|||
)
|
||||
});
|
||||
|
||||
let p_abs_sum = data.p00.abs()
|
||||
+ Vector3f::from(data.p01.abs())
|
||||
+ Vector3f::from(data.p10.abs())
|
||||
+ Vector3f::from(data.p11.abs());
|
||||
let p_abs_sum = p00.abs()
|
||||
+ Vector3f::from(p01.abs())
|
||||
+ Vector3f::from(p10.abs())
|
||||
+ Vector3f::from(p11.abs());
|
||||
let p_error = gamma(6) * Vector3f::from(p_abs_sum);
|
||||
let pi = Point3fi::new_with_error(p, p_error);
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(SurfaceInteraction::new_simple(pi, n, st)),
|
||||
intr: Interaction::Surface(SurfaceInteraction::new_simple(pi, n, st)),
|
||||
pdf: pdf / dpdu.cross(dpdv).norm(),
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
||||
let data = self.get_data();
|
||||
let v00 = (data.p00 - ctx.p()).normalize();
|
||||
let v10 = (data.p10 - ctx.p()).normalize();
|
||||
let v01 = (data.p01 - ctx.p()).normalize();
|
||||
let v11 = (data.p11 - ctx.p()).normalize();
|
||||
let corners = self.get_points();
|
||||
let [p00, p01, p10, p11] = corners;
|
||||
let v00 = (p00 - ctx.p()).normalize();
|
||||
let v10 = (p10 - ctx.p()).normalize();
|
||||
let v01 = (p01 - ctx.p()).normalize();
|
||||
let v11 = (p11 - ctx.p()).normalize();
|
||||
|
||||
let use_area_sampling = self.rectangle
|
||||
|| data.mesh.image_distribution.is_some()
|
||||
|| !self.mesh.image_distribution.is_null()
|
||||
|| spherical_quad_area(v00, v10, v11, v01) <= Self::MIN_SPHERICAL_SAMPLE_AREA;
|
||||
if use_area_sampling {
|
||||
self.sample_area_and_pdf(ctx, u)
|
||||
} else {
|
||||
self.sample_solid_angle(&data, ctx, u, &[v00, v10, v01, v11])
|
||||
self.sample_solid_angle(&corners, ctx, u, &[v00, v10, v01, v11])
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -644,28 +696,30 @@ impl ShapeTrait for BilinearPatchShape {
|
|||
return 0.0;
|
||||
};
|
||||
|
||||
let data = self.get_data();
|
||||
let uv = if let Some(uvs) = &data.mesh.uv {
|
||||
Point2f::invert_bilinear(si.uv, uvs)
|
||||
let corners = self.get_points();
|
||||
let [p00, p01, p10, p11] = corners;
|
||||
let patch_uvs = self.get_uvs();
|
||||
let uv = if let Some(uvs) = patch_uvs {
|
||||
Point2f::invert_bilinear(si.common.uv, &uvs)
|
||||
} else {
|
||||
si.uv
|
||||
si.common.uv
|
||||
};
|
||||
|
||||
let param_pdf = if let Some(image_distrib) = &data.mesh.image_distribution {
|
||||
image_distrib.pdf(uv)
|
||||
let param_pdf = if !self.mesh.image_distribution.is_null() {
|
||||
self.mesh.image_distribution.pdf(uv)
|
||||
} else if self.rectangle {
|
||||
let w = [
|
||||
(data.p10 - data.p00).cross(data.p01 - data.p00).norm(),
|
||||
(data.p10 - data.p00).cross(data.p11 - data.p10).norm(),
|
||||
(data.p01 - data.p00).cross(data.p11 - data.p01).norm(),
|
||||
(data.p11 - data.p10).cross(data.p11 - data.p01).norm(),
|
||||
(p10 - p00).cross(p01 - p00).norm(),
|
||||
(p10 - p00).cross(p11 - p10).norm(),
|
||||
(p01 - p00).cross(p11 - p01).norm(),
|
||||
(p11 - p10).cross(p11 - p01).norm(),
|
||||
];
|
||||
bilinear_pdf(uv, &w)
|
||||
} else {
|
||||
1.
|
||||
};
|
||||
|
||||
let (_, dpdu, dpdv) = self.calculate_base_derivatives(&data, uv);
|
||||
let (_, dpdu, dpdv) = self.calculate_base_derivatives(&corners, uv);
|
||||
let cross = dpdu.cross(dpdv).norm();
|
||||
if cross == 0. { 0. } else { param_pdf / cross }
|
||||
}
|
||||
|
|
@ -677,15 +731,16 @@ impl ShapeTrait for BilinearPatchShape {
|
|||
return 0.;
|
||||
};
|
||||
|
||||
let data = self.get_data();
|
||||
let corners = self.get_points();
|
||||
let [p00, p01, p10, p11] = corners;
|
||||
|
||||
let v00 = (data.p00 - ctx.p()).normalize();
|
||||
let v10 = (data.p10 - ctx.p()).normalize();
|
||||
let v01 = (data.p01 - ctx.p()).normalize();
|
||||
let v11 = (data.p11 - ctx.p()).normalize();
|
||||
let v00 = (p00 - ctx.p()).normalize();
|
||||
let v10 = (p10 - ctx.p()).normalize();
|
||||
let v01 = (p01 - ctx.p()).normalize();
|
||||
let v11 = (p11 - ctx.p()).normalize();
|
||||
|
||||
let use_area_sampling = !self.rectangle
|
||||
|| data.mesh.image_distribution.is_some()
|
||||
|| !self.mesh.image_distribution.is_null()
|
||||
|| spherical_quad_area(v00, v10, v01, v11) <= Self::MIN_SPHERICAL_SAMPLE_AREA;
|
||||
|
||||
if use_area_sampling {
|
||||
|
|
@ -709,9 +764,9 @@ impl ShapeTrait for BilinearPatchShape {
|
|||
];
|
||||
let u = invert_spherical_rectangle_sample(
|
||||
ctx.p(),
|
||||
data.p00,
|
||||
data.p10 - data.p00,
|
||||
data.p01 - data.p00,
|
||||
p00,
|
||||
p10 - p00,
|
||||
p01 - p00,
|
||||
isect.intr.p(),
|
||||
);
|
||||
pdf *= bilinear_pdf(u, &w);
|
||||
|
|
|
|||
|
|
@ -1,21 +1,95 @@
|
|||
use crate::core::interaction::InteractionTrait;
|
||||
use crate::Float;
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3f,
|
||||
VectorLike,
|
||||
};
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
|
||||
use crate::core::shape::{ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait};
|
||||
use crate::utils::math::{clamp, lerp, square};
|
||||
use crate::utils::splines::{
|
||||
bound_cubic_bezier, cubic_bezier_control_points, evaluate_cubic_bezier, subdivide_cubic_bezier,
|
||||
};
|
||||
use crate::utils::transform::look_at;
|
||||
use crate::utils::transform::{Transform, look_at};
|
||||
|
||||
use super::{
|
||||
Bounds3f, CurveCommon, CurveShape, CurveType, DirectionCone, Float, Interaction, Normal3f,
|
||||
Point2f, Point3f, Point3fi, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext,
|
||||
ShapeTrait, SurfaceInteraction, Transform, Vector2f, Vector3f, VectorLike,
|
||||
};
|
||||
use std::sync::Arc;
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
pub enum CurveType {
|
||||
Flat,
|
||||
Cylinder,
|
||||
Ribbon,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct CurveCommon {
|
||||
pub curve_type: CurveType,
|
||||
pub cp_obj: [Point3f; 4],
|
||||
pub width: [Float; 2],
|
||||
pub n: [Normal3f; 2],
|
||||
pub normal_angle: Float,
|
||||
pub inv_sin_normal_angle: Float,
|
||||
pub render_from_object: Transform,
|
||||
pub object_from_render: Transform,
|
||||
pub reverse_orientation: bool,
|
||||
pub transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
impl CurveCommon {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
c: &[Point3f],
|
||||
w0: Float,
|
||||
w1: Float,
|
||||
curve_type: CurveType,
|
||||
norm: &[Normal3f],
|
||||
render_from_object: Transform,
|
||||
object_from_render: Transform,
|
||||
reverse_orientation: bool,
|
||||
) -> Self {
|
||||
let transform_swap_handedness = render_from_object.swaps_handedness();
|
||||
let width = [w0, w1];
|
||||
assert_eq!(c.len(), 4);
|
||||
let cp_obj: [Point3f; 4] = c[..4].try_into().unwrap();
|
||||
|
||||
let mut n = [Normal3f::default(); 2];
|
||||
let mut normal_angle: Float = 0.;
|
||||
let mut inv_sin_normal_angle: Float = 0.;
|
||||
if norm.len() == 2 {
|
||||
n[0] = norm[0].normalize();
|
||||
n[1] = norm[1].normalize();
|
||||
normal_angle = n[0].angle_between(n[1]);
|
||||
inv_sin_normal_angle = 1. / normal_angle.sin();
|
||||
}
|
||||
|
||||
Self {
|
||||
curve_type,
|
||||
cp_obj,
|
||||
width,
|
||||
n,
|
||||
normal_angle,
|
||||
inv_sin_normal_angle,
|
||||
render_from_object,
|
||||
object_from_render,
|
||||
reverse_orientation,
|
||||
transform_swap_handedness,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct CurveShape {
|
||||
pub common: CurveCommon,
|
||||
pub u_min: Float,
|
||||
pub u_max: Float,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct IntersectionContext {
|
||||
ray: Ray,
|
||||
object_from_ray: Arc<Transform>,
|
||||
common: CurveCommon,
|
||||
pub ray: Ray,
|
||||
pub object_from_ray: Transform,
|
||||
pub common: CurveCommon,
|
||||
}
|
||||
|
||||
impl CurveShape {
|
||||
|
|
@ -32,7 +106,6 @@ impl CurveShape {
|
|||
.common
|
||||
.object_from_render
|
||||
.apply_to_ray(r, &mut Some(t_max));
|
||||
// Get object-space control points for curve segment, cpObj
|
||||
let cp_obj = cubic_bezier_control_points(&self.common.cp_obj, self.u_min, self.u_max);
|
||||
// Project curve control points to plane perpendicular to ray
|
||||
let mut dx = ray.d.cross(cp_obj[3] - cp_obj[0]);
|
||||
|
|
@ -43,7 +116,6 @@ impl CurveShape {
|
|||
let ray_from_object = look_at(ray.o, ray.o + ray.d, dx).expect("Inversion error");
|
||||
let cp = [0; 4].map(|i| ray_from_object.apply_to_point(cp_obj[i]));
|
||||
|
||||
// Test ray against bound of projected control points
|
||||
let max_width = lerp(self.u_min, self.common.width[0], self.common.width[1]).max(lerp(
|
||||
self.u_max,
|
||||
self.common.width[0],
|
||||
|
|
@ -77,7 +149,7 @@ impl CurveShape {
|
|||
|
||||
let context = IntersectionContext {
|
||||
ray,
|
||||
object_from_ray: Arc::new(ray_from_object.inverse()),
|
||||
object_from_ray: ray_from_object.inverse(),
|
||||
common: self.common.clone(),
|
||||
};
|
||||
|
||||
|
|
@ -300,18 +372,18 @@ impl ShapeTrait for CurveShape {
|
|||
}
|
||||
|
||||
fn pdf(&self, _interaction: &Interaction) -> Float {
|
||||
todo!()
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn pdf_from_context(&self, _ctx: &ShapeSampleContext, _wi: Vector3f) -> Float {
|
||||
todo!()
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn sample(&self, _u: Point2f) -> Option<ShapeSample> {
|
||||
todo!()
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn sample_from_context(&self, _ctx: &ShapeSampleContext, _u: Point2f) -> Option<ShapeSample> {
|
||||
todo!()
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,20 +1,39 @@
|
|||
use super::{
|
||||
Bounds3f, CylinderShape, DirectionCone, Float, Interaction, Normal3f, PI, Point2f, Point3f,
|
||||
Point3fi, QuadricIntersection, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext,
|
||||
ShapeTrait, SurfaceInteraction, Transform, Vector3f, Vector3fi,
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3f,
|
||||
Vector3fi, VectorLike,
|
||||
};
|
||||
use crate::core::geometry::{Sqrt, Tuple, VectorLike};
|
||||
use crate::core::interaction::InteractionTrait;
|
||||
use crate::core::pbrt::gamma;
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
|
||||
use crate::core::shape::{
|
||||
QuadricIntersection, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait,
|
||||
};
|
||||
use crate::utils::splines::{
|
||||
bound_cubic_bezier, cubic_bezier_control_points, evaluate_cubic_bezier, subdivide_cubic_bezier,
|
||||
};
|
||||
use crate::utils::transform::{Transform, look_at};
|
||||
use crate::{Float, PI, gamma};
|
||||
|
||||
use crate::core::geometry::{Sqrt, Tuple};
|
||||
use crate::utils::interval::Interval;
|
||||
use crate::utils::math::{difference_of_products, lerp, square};
|
||||
use crate::utils::math::{clamp, difference_of_products, lerp, square};
|
||||
use std::mem;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct CylinderShape {
|
||||
pub radius: Float,
|
||||
pub z_min: Float,
|
||||
pub z_max: Float,
|
||||
pub phi_max: Float,
|
||||
pub render_from_object: Transform,
|
||||
pub object_from_render: Transform,
|
||||
pub reverse_orientation: bool,
|
||||
pub transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
impl CylinderShape {
|
||||
pub fn new(
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
render_from_object: Transform,
|
||||
object_from_render: Transform,
|
||||
reverse_orientation: bool,
|
||||
radius: Float,
|
||||
z_min: Float,
|
||||
|
|
@ -26,7 +45,7 @@ impl CylinderShape {
|
|||
z_min,
|
||||
z_max,
|
||||
phi_max,
|
||||
render_from_object: render_from_object.clone(),
|
||||
render_from_object,
|
||||
object_from_render,
|
||||
reverse_orientation,
|
||||
transform_swap_handedness: render_from_object.swaps_handedness(),
|
||||
|
|
@ -247,14 +266,14 @@ impl ShapeTrait for CylinderShape {
|
|||
(p_obj.z() - self.z_min) / (self.z_max - self.z_min),
|
||||
);
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(SurfaceInteraction::new_simple(pi, n, uv)),
|
||||
intr: SurfaceInteraction::new_simple(pi, n, uv),
|
||||
pdf: 1. / self.area(),
|
||||
})
|
||||
}
|
||||
|
||||
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
||||
let mut ss = self.sample(u)?;
|
||||
let intr = Arc::make_mut(&mut ss.intr);
|
||||
let intr = &mut ss.intr;
|
||||
intr.get_common_mut().time = ctx.time;
|
||||
let mut wi = ss.intr.p() - ctx.p();
|
||||
if wi.norm_squared() == 0. {
|
||||
|
|
|
|||
|
|
@ -1,22 +1,38 @@
|
|||
use super::{
|
||||
Bounds3f, DirectionCone, DiskShape, Float, Interaction, Normal3f, PI, Point2f, Point3f,
|
||||
Point3fi, QuadricIntersection, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext,
|
||||
ShapeTrait, SurfaceInteraction, Transform, Vector3f,
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3f,
|
||||
Vector3fi, VectorLike,
|
||||
};
|
||||
use crate::core::geometry::VectorLike;
|
||||
use crate::core::interaction::InteractionTrait;
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
|
||||
use crate::core::shape::{
|
||||
QuadricIntersection, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait,
|
||||
};
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::math::square;
|
||||
use crate::utils::sampling::sample_uniform_disk_concentric;
|
||||
use crate::{Float, PI};
|
||||
use std::sync::Arc;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct DiskShape {
|
||||
pub radius: Float,
|
||||
pub inner_radius: Float,
|
||||
pub height: Float,
|
||||
pub phi_max: Float,
|
||||
pub render_from_object: Transform,
|
||||
pub object_from_render: Transform,
|
||||
pub reverse_orientation: bool,
|
||||
pub transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
impl DiskShape {
|
||||
pub fn new(
|
||||
radius: Float,
|
||||
inner_radius: Float,
|
||||
height: Float,
|
||||
phi_max: Float,
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
render_from_object: Transform,
|
||||
object_from_render: Transform,
|
||||
reverse_orientation: bool,
|
||||
) -> Self {
|
||||
Self {
|
||||
|
|
@ -157,8 +173,9 @@ impl ShapeTrait for DiskShape {
|
|||
phi / self.phi_max,
|
||||
(self.radius - radius_sample) / (self.radius - self.inner_radius),
|
||||
);
|
||||
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(SurfaceInteraction::new_simple(pi, n, uv)),
|
||||
intr: Interaction::Surface(SurfaceInteraction::new_simple(pi, n, uv)),
|
||||
pdf: 1. / self.area(),
|
||||
})
|
||||
}
|
||||
|
|
@ -173,17 +190,18 @@ impl ShapeTrait for DiskShape {
|
|||
|
||||
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
||||
let mut ss = self.sample(u)?;
|
||||
let intr = Arc::make_mut(&mut ss.intr);
|
||||
intr.get_common_mut().time = ctx.time;
|
||||
ss.intr.get_common_mut().time = ctx.time;
|
||||
let mut wi = ss.intr.p() - ctx.p();
|
||||
if wi.norm_squared() == 0. {
|
||||
return None;
|
||||
}
|
||||
wi = wi.normalize();
|
||||
|
||||
ss.pdf = Vector3f::from(ss.intr.n()).dot(-wi).abs() / ctx.p().distance_squared(ss.intr.p());
|
||||
if ss.pdf.is_infinite() {
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(ss)
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -5,315 +5,9 @@ pub mod disk;
|
|||
pub mod sphere;
|
||||
pub mod triangle;
|
||||
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3f,
|
||||
Vector3fi, VectorLike,
|
||||
};
|
||||
use crate::core::interaction::{
|
||||
Interaction, InteractionTrait, MediumInteraction, SurfaceInteraction,
|
||||
};
|
||||
use crate::core::material::Material;
|
||||
use crate::core::medium::{Medium, MediumInterface};
|
||||
use crate::core::pbrt::{Float, PI};
|
||||
use crate::lights::Light;
|
||||
use crate::utils::math::{next_float_down, next_float_up};
|
||||
use crate::utils::transform::Transform;
|
||||
use enum_dispatch::enum_dispatch;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SphereShape {
|
||||
radius: Float,
|
||||
z_min: Float,
|
||||
z_max: Float,
|
||||
theta_z_min: Float,
|
||||
theta_z_max: Float,
|
||||
phi_max: Float,
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
reverse_orientation: bool,
|
||||
transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
impl Default for SphereShape {
|
||||
fn default() -> Self {
|
||||
Self::new(
|
||||
Transform::default().into(),
|
||||
Transform::default().into(),
|
||||
false,
|
||||
1.0,
|
||||
-1.0,
|
||||
1.0,
|
||||
360.0,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CylinderShape {
|
||||
radius: Float,
|
||||
z_min: Float,
|
||||
z_max: Float,
|
||||
phi_max: Float,
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
reverse_orientation: bool,
|
||||
transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DiskShape {
|
||||
radius: Float,
|
||||
inner_radius: Float,
|
||||
height: Float,
|
||||
phi_max: Float,
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
reverse_orientation: bool,
|
||||
transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TriangleShape {
|
||||
pub mesh_ind: usize,
|
||||
pub tri_index: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BilinearPatchShape {
|
||||
mesh_index: usize,
|
||||
blp_index: usize,
|
||||
area: Float,
|
||||
rectangle: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub enum CurveType {
|
||||
Flat,
|
||||
Cylinder,
|
||||
Ribbon,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CurveCommon {
|
||||
curve_type: CurveType,
|
||||
cp_obj: [Point3f; 4],
|
||||
width: [Float; 2],
|
||||
n: [Normal3f; 2],
|
||||
normal_angle: Float,
|
||||
inv_sin_normal_angle: Float,
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
reverse_orientation: bool,
|
||||
transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
impl CurveCommon {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
c: &[Point3f],
|
||||
w0: Float,
|
||||
w1: Float,
|
||||
curve_type: CurveType,
|
||||
norm: &[Vector3f],
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
reverse_orientation: bool,
|
||||
) -> Self {
|
||||
let transform_swap_handedness = render_from_object.swaps_handedness();
|
||||
let width = [w0, w1];
|
||||
assert_eq!(c.len(), 4);
|
||||
let cp_obj: [Point3f; 4] = c[..4].try_into().unwrap();
|
||||
|
||||
let mut n = [Normal3f::default(); 2];
|
||||
let mut normal_angle: Float = 0.;
|
||||
let mut inv_sin_normal_angle: Float = 0.;
|
||||
if norm.len() == 2 {
|
||||
n[0] = norm[0].normalize().into();
|
||||
n[1] = norm[1].normalize().into();
|
||||
normal_angle = n[0].angle_between(n[1]);
|
||||
inv_sin_normal_angle = 1. / normal_angle.sin();
|
||||
}
|
||||
|
||||
Self {
|
||||
curve_type,
|
||||
cp_obj,
|
||||
width,
|
||||
n,
|
||||
normal_angle,
|
||||
inv_sin_normal_angle,
|
||||
render_from_object,
|
||||
object_from_render,
|
||||
reverse_orientation,
|
||||
transform_swap_handedness,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CurveShape {
|
||||
common: CurveCommon,
|
||||
u_min: Float,
|
||||
u_max: Float,
|
||||
}
|
||||
|
||||
// Define Intersection objects. This only varies for
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ShapeIntersection {
|
||||
pub intr: SurfaceInteraction,
|
||||
pub t_hit: Float,
|
||||
}
|
||||
|
||||
impl ShapeIntersection {
|
||||
pub fn new(intr: SurfaceInteraction, t_hit: Float) -> Self {
|
||||
Self { intr, t_hit }
|
||||
}
|
||||
|
||||
pub fn t_hit(&self) -> Float {
|
||||
self.t_hit
|
||||
}
|
||||
|
||||
pub fn set_t_hit(&mut self, new_t: Float) {
|
||||
self.t_hit = new_t;
|
||||
}
|
||||
|
||||
pub fn set_intersection_properties(
|
||||
&mut self,
|
||||
mtl: Arc<Material>,
|
||||
area: Arc<Light>,
|
||||
prim_medium_interface: Option<MediumInterface>,
|
||||
ray_medium: Option<Arc<Medium>>,
|
||||
) {
|
||||
let ray_medium = ray_medium.expect("Ray medium must be defined for intersection");
|
||||
self.intr
|
||||
.set_intersection_properties(mtl, area, prim_medium_interface, ray_medium);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct QuadricIntersection {
|
||||
t_hit: Float,
|
||||
p_obj: Point3f,
|
||||
phi: Float,
|
||||
}
|
||||
|
||||
impl QuadricIntersection {
|
||||
pub fn new(t_hit: Float, p_obj: Point3f, phi: Float) -> Self {
|
||||
Self { t_hit, p_obj, phi }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct TriangleIntersection {
|
||||
b0: Float,
|
||||
b1: Float,
|
||||
b2: Float,
|
||||
t: Float,
|
||||
}
|
||||
|
||||
impl TriangleIntersection {
|
||||
pub fn new(b0: Float, b1: Float, b2: Float, t: Float) -> Self {
|
||||
Self { b0, b1, b2, t }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BilinearIntersection {
|
||||
uv: Point2f,
|
||||
t: Float,
|
||||
}
|
||||
|
||||
impl BilinearIntersection {
|
||||
pub fn new(uv: Point2f, t: Float) -> Self {
|
||||
Self { uv, t }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ShapeSample {
|
||||
pub intr: Arc<SurfaceInteraction>,
|
||||
pub pdf: Float,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ShapeSampleContext {
|
||||
pub pi: Point3fi,
|
||||
pub n: Normal3f,
|
||||
pub ns: Normal3f,
|
||||
pub time: Float,
|
||||
}
|
||||
|
||||
impl ShapeSampleContext {
|
||||
pub fn new(pi: Point3fi, n: Normal3f, ns: Normal3f, time: Float) -> Self {
|
||||
Self { pi, n, ns, time }
|
||||
}
|
||||
|
||||
pub fn new_from_interaction(si: &SurfaceInteraction) -> Self {
|
||||
Self {
|
||||
pi: si.pi(),
|
||||
n: si.n(),
|
||||
ns: si.shading.n,
|
||||
time: si.time(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn p(&self) -> Point3f {
|
||||
Point3f::from(self.pi)
|
||||
}
|
||||
|
||||
pub fn offset_ray_origin(&self, w: Vector3f) -> Point3f {
|
||||
let d = self.n.abs().dot(self.pi.error().into());
|
||||
let mut offset = d * Vector3f::from(self.n);
|
||||
if w.dot(self.n.into()) < 0.0 {
|
||||
offset = -offset;
|
||||
}
|
||||
|
||||
let mut po = Point3f::from(self.pi) + offset;
|
||||
for i in 0..3 {
|
||||
if offset[i] > 0.0 {
|
||||
po[i] = next_float_up(po[i]);
|
||||
} else {
|
||||
po[i] = next_float_down(po[i]);
|
||||
}
|
||||
}
|
||||
po
|
||||
}
|
||||
|
||||
pub fn offset_ray_origin_from_point(&self, pt: Point3f) -> Point3f {
|
||||
self.offset_ray_origin(pt - self.p())
|
||||
}
|
||||
|
||||
pub fn spawn_ray(&self, w: Vector3f) -> Ray {
|
||||
Ray::new(self.offset_ray_origin(w), w, Some(self.time), None)
|
||||
}
|
||||
}
|
||||
|
||||
#[enum_dispatch]
|
||||
pub trait ShapeTrait {
|
||||
fn bounds(&self) -> Bounds3f;
|
||||
fn normal_bounds(&self) -> DirectionCone;
|
||||
fn intersect(&self, ray: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection>;
|
||||
fn intersect_p(&self, ray: &Ray, t_max: Option<Float>) -> bool;
|
||||
fn area(&self) -> Float;
|
||||
fn pdf(&self, interaction: &Interaction) -> Float;
|
||||
fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float;
|
||||
fn sample(&self, u: Point2f) -> Option<ShapeSample>;
|
||||
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample>;
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[enum_dispatch(ShapeTrait)]
|
||||
pub enum Shape {
|
||||
Sphere(SphereShape),
|
||||
Cylinder(CylinderShape),
|
||||
Disk(DiskShape),
|
||||
Triangle(TriangleShape),
|
||||
BilinearPatch(BilinearPatchShape),
|
||||
Curve(CurveShape),
|
||||
}
|
||||
|
||||
impl Default for Shape {
|
||||
fn default() -> Self {
|
||||
Shape::Sphere(SphereShape::default())
|
||||
}
|
||||
}
|
||||
pub use bilinear::*;
|
||||
pub use curves::*;
|
||||
pub use cylinder::*;
|
||||
pub use disk::*;
|
||||
pub use sphere::*;
|
||||
pub use triangle::*;
|
||||
|
|
|
|||
|
|
@ -1,22 +1,55 @@
|
|||
use super::{
|
||||
Bounds3f, DirectionCone, Float, Interaction, Normal3f, PI, Point2f, Point3f, Point3fi,
|
||||
QuadricIntersection, Ray, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait,
|
||||
SphereShape, SurfaceInteraction, Transform, Vector3f, Vector3fi,
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3f,
|
||||
Vector3fi, VectorLike,
|
||||
};
|
||||
use crate::core::geometry::{Frame, Sqrt, VectorLike, spherical_direction};
|
||||
use crate::core::interaction::InteractionTrait;
|
||||
use crate::core::geometry::{Frame, Sqrt, spherical_direction};
|
||||
use crate::core::interaction::{Interaction, InteractionTrait, SurfaceInteraction};
|
||||
use crate::core::pbrt::gamma;
|
||||
use crate::core::shape::{
|
||||
QuadricIntersection, ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait,
|
||||
};
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::interval::Interval;
|
||||
use crate::utils::math::{clamp, difference_of_products, radians, safe_acos, safe_sqrt, square};
|
||||
use crate::utils::sampling::sample_uniform_sphere;
|
||||
use crate::{Float, PI};
|
||||
|
||||
use std::mem;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct SphereShape {
|
||||
pub radius: Float,
|
||||
pub z_min: Float,
|
||||
pub z_max: Float,
|
||||
pub theta_z_min: Float,
|
||||
pub theta_z_max: Float,
|
||||
pub phi_max: Float,
|
||||
pub render_from_object: Transform,
|
||||
pub object_from_render: Transform,
|
||||
pub reverse_orientation: bool,
|
||||
pub transform_swap_handedness: bool,
|
||||
}
|
||||
|
||||
impl Default for SphereShape {
|
||||
fn default() -> Self {
|
||||
Self::new(
|
||||
Transform::default().into(),
|
||||
Transform::default().into(),
|
||||
false,
|
||||
1.0,
|
||||
-1.0,
|
||||
1.0,
|
||||
360.0,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl SphereShape {
|
||||
pub fn new(
|
||||
render_from_object: Arc<Transform>,
|
||||
object_from_render: Arc<Transform>,
|
||||
render_from_object: Transform,
|
||||
object_from_render: Transform,
|
||||
reverse_orientation: bool,
|
||||
radius: Float,
|
||||
z_min: Float,
|
||||
|
|
@ -287,7 +320,7 @@ impl ShapeTrait for SphereShape {
|
|||
));
|
||||
let si = SurfaceInteraction::new_simple(pi, n, uv);
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(si),
|
||||
intr: Interaction::Surface(si),
|
||||
pdf: 1. / self.area(),
|
||||
})
|
||||
}
|
||||
|
|
@ -297,8 +330,7 @@ impl ShapeTrait for SphereShape {
|
|||
let p_origin = ctx.offset_ray_origin_from_point(p_center);
|
||||
if p_origin.distance_squared(p_center) <= square(self.radius) {
|
||||
let mut ss = self.sample(u)?;
|
||||
let intr = Arc::make_mut(&mut ss.intr);
|
||||
intr.get_common_mut().time = ctx.time;
|
||||
ss.intr.get_common_mut().time = ctx.time;
|
||||
let mut wi = ss.intr.p() - ctx.p();
|
||||
if wi.norm_squared() == 0. {
|
||||
return None;
|
||||
|
|
@ -349,9 +381,9 @@ impl ShapeTrait for SphereShape {
|
|||
(theta - self.theta_z_min) / (self.theta_z_max - self.theta_z_min),
|
||||
);
|
||||
let pi = Point3fi::new_with_error(p_obj, p_error);
|
||||
let si = SurfaceInteraction::new_simple(pi, n, uv);
|
||||
let intr = SurfaceInteraction::new_simple(pi, n, uv);
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(si),
|
||||
intr: Interaction::Surface(intr),
|
||||
pdf: 1. / (2. * PI * one_minus_cos_theta_max),
|
||||
})
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,80 +1,130 @@
|
|||
use super::{
|
||||
Bounds3f, DirectionCone, Float, Interaction, Normal3f, Point2f, Point3f, Point3fi, Ray,
|
||||
ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait, SurfaceInteraction,
|
||||
TriangleIntersection, TriangleShape, Vector2f, Vector3f,
|
||||
use crate::Float;
|
||||
use crate::core::geometry::{
|
||||
Bounds3f, DirectionCone, Normal, Normal3f, Point2f, Point3f, Point3fi, Ray, Vector2f, Vector3,
|
||||
Vector3f,
|
||||
};
|
||||
use crate::core::geometry::{Sqrt, Tuple, VectorLike, spherical_triangle_area};
|
||||
use crate::core::interaction::InteractionTrait;
|
||||
use crate::core::interaction::{
|
||||
Interaction, InteractionBase, InteractionTrait, SimpleInteraction, SurfaceInteraction,
|
||||
};
|
||||
use crate::core::pbrt::gamma;
|
||||
use crate::core::shape::{ShapeIntersection, ShapeSample, ShapeSampleContext, ShapeTrait};
|
||||
use crate::utils::math::{difference_of_products, square};
|
||||
use crate::utils::mesh::TriangleMesh;
|
||||
use crate::utils::sampling::{
|
||||
bilinear_pdf, invert_spherical_triangle_sample, sample_bilinear, sample_spherical_triangle,
|
||||
sample_uniform_triangle,
|
||||
};
|
||||
use std::mem;
|
||||
use std::sync::{Arc, OnceLock};
|
||||
|
||||
pub static TRIANGLE_MESHES: OnceLock<Vec<Arc<TriangleMesh>>> = OnceLock::new();
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct TriangleIntersection {
|
||||
b0: Float,
|
||||
b1: Float,
|
||||
b2: Float,
|
||||
t: Float,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct TriangleData {
|
||||
vertices: [Point3f; 3],
|
||||
uvs: [Point2f; 3],
|
||||
normals: Option<[Normal3f; 3]>,
|
||||
area: Float,
|
||||
normal: Normal3f,
|
||||
reverse_orientation: bool,
|
||||
transform_swaps_handedness: bool,
|
||||
impl TriangleIntersection {
|
||||
pub fn new(b0: Float, b1: Float, b2: Float, t: Float) -> Self {
|
||||
Self { b0, b1, b2, t }
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct TriangleShape {
|
||||
pub mesh: TriangleMesh,
|
||||
pub tri_index: u32,
|
||||
}
|
||||
|
||||
impl TriangleShape {
|
||||
pub const MIN_SPHERICAL_SAMPLE_AREA: Float = 3e-4;
|
||||
pub const MAX_SPHERICAL_SAMPLE_AREA: Float = 6.22;
|
||||
|
||||
fn mesh(&self) -> &Arc<TriangleMesh> {
|
||||
let meshes = TRIANGLE_MESHES
|
||||
.get()
|
||||
.expect("Mesh has not been initialized");
|
||||
&meshes[self.mesh_ind]
|
||||
}
|
||||
|
||||
fn get_data(&self) -> TriangleData {
|
||||
let mesh = self.mesh();
|
||||
let start = 3 * self.tri_index;
|
||||
let indices = &mesh.vertex_indices[start..start + 3];
|
||||
let vertices = [mesh.p[indices[0]], mesh.p[indices[1]], mesh.p[indices[2]]];
|
||||
let uvs = mesh.uv.as_ref().map_or(
|
||||
#[inline(always)]
|
||||
fn get_vertex_indices(&self) -> [usize; 3] {
|
||||
unsafe {
|
||||
let base_ptr = self
|
||||
.mesh
|
||||
.vertex_indices
|
||||
.0
|
||||
.add((self.tri_index as usize) * 3);
|
||||
[
|
||||
Point2f::zero(),
|
||||
Point2f::new(1.0, 0.0),
|
||||
Point2f::new(1.0, 1.0),
|
||||
],
|
||||
|uv| [uv[indices[0]], uv[indices[1]], uv[indices[2]]],
|
||||
);
|
||||
let normals = mesh
|
||||
.n
|
||||
.as_ref()
|
||||
.map(|n| [n[indices[0]], n[indices[1]], n[indices[2]]]);
|
||||
let dp1 = vertices[1] - vertices[0];
|
||||
let dp2 = vertices[2] - vertices[0];
|
||||
let normal = Normal3f::from(dp1.cross(dp2).normalize());
|
||||
let area = 0.5 * dp1.cross(dp2).norm();
|
||||
|
||||
TriangleData {
|
||||
vertices,
|
||||
uvs,
|
||||
normals,
|
||||
area,
|
||||
normal,
|
||||
reverse_orientation: mesh.reverse_orientation,
|
||||
transform_swaps_handedness: mesh.transform_swaps_handedness,
|
||||
*base_ptr.add(0) as usize,
|
||||
*base_ptr.add(1) as usize,
|
||||
*base_ptr.add(2) as usize,
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
fn solid_angle(&self, p: Point3f) -> Float {
|
||||
let data = self.get_data();
|
||||
let [p0, p1, p2] = data.vertices;
|
||||
#[inline(always)]
|
||||
fn get_points(&self) -> [Point3f; 3] {
|
||||
let [v0, v1, v2] = self.get_vertex_indices();
|
||||
unsafe {
|
||||
[
|
||||
*self.mesh.p.0.add(v0),
|
||||
*self.mesh.p.0.add(v1),
|
||||
*self.mesh.p.0.add(v2),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_uvs(&self) -> Option<[Point2f; 3]> {
|
||||
if self.mesh.uv.is_null() {
|
||||
return None;
|
||||
}
|
||||
let [v0, v1, v2] = self.get_vertex_indices();
|
||||
unsafe {
|
||||
Some([
|
||||
*self.mesh.uv.0.add(v0),
|
||||
*self.mesh.uv.0.add(v1),
|
||||
*self.mesh.uv.0.add(v2),
|
||||
])
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_tangents(&self) -> Option<[Vector3f; 3]> {
|
||||
if self.mesh.s.is_null() {
|
||||
return None;
|
||||
}
|
||||
let [v0, v1, v2] = self.get_vertex_indices();
|
||||
unsafe {
|
||||
Some([
|
||||
*self.mesh.s.0.add(v0),
|
||||
*self.mesh.s.0.add(v1),
|
||||
*self.mesh.s.0.add(v2),
|
||||
])
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_shading_normals(&self) -> Option<[Normal3f; 3]> {
|
||||
if self.mesh.n.is_null() {
|
||||
return None;
|
||||
}
|
||||
let [v0, v1, v2] = self.get_vertex_indices();
|
||||
unsafe {
|
||||
Some([
|
||||
*self.mesh.n.0.add(v0),
|
||||
*self.mesh.n.0.add(v1),
|
||||
*self.mesh.n.0.add(v2),
|
||||
])
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new(mesh: TriangleMesh, tri_index: u32) -> Self {
|
||||
Self { mesh, tri_index }
|
||||
}
|
||||
|
||||
pub fn get_mesh(&self) -> TriangleMesh {
|
||||
self.mesh
|
||||
}
|
||||
|
||||
pub fn solid_angle(&self, p: Point3f) -> Float {
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
spherical_triangle_area(
|
||||
(p0 - p).normalize(),
|
||||
(p1 - p).normalize(),
|
||||
|
|
@ -82,100 +132,15 @@ impl TriangleShape {
|
|||
)
|
||||
}
|
||||
|
||||
fn intersect_triangle(&self, ray: &Ray, t_max: Float) -> Option<TriangleIntersection> {
|
||||
let data = self.get_data();
|
||||
let [p0, p1, p2] = data.vertices;
|
||||
if (p2 - p0).cross(p1 - p0).norm_squared() == 0. {
|
||||
return None;
|
||||
}
|
||||
let mut p0t = p0 - Vector3f::from(ray.o);
|
||||
let mut p1t = p1 - Vector3f::from(ray.o);
|
||||
let mut p2t = p2 - Vector3f::from(ray.o);
|
||||
|
||||
let kz = ray.d.abs().max_component_index();
|
||||
let kx = if kz == 3 { 0 } else { kz + 1 };
|
||||
let ky = if kz == 3 { 0 } else { kx + 1 };
|
||||
let d = ray.d.permute([kx, ky, kz]);
|
||||
p0t = p0t.permute([kx, ky, kz]);
|
||||
p1t = p1t.permute([kx, ky, kz]);
|
||||
p2t = p2t.permute([kx, ky, kz]);
|
||||
// Apply shear transformation to translated vertex positions
|
||||
let sx = -d.x() / d.z();
|
||||
let sy = -d.y() / d.z();
|
||||
let sz = 1. / d.z();
|
||||
p0t[0] += sx * p0t.z();
|
||||
p0t[1] += sy * p0t.z();
|
||||
p1t[0] += sx * p1t.z();
|
||||
p1t[1] += sy * p1t.z();
|
||||
p2t[0] += sx * p2t.z();
|
||||
p2t[0] += sy * p2t.z();
|
||||
|
||||
// Compute edge function coefficients e0, e1, and e2
|
||||
let mut e0 = difference_of_products(p1t.x(), p2t.y(), p1t.y(), p2t.x());
|
||||
let mut e1 = difference_of_products(p2t.x(), p0t.y(), p2t.y(), p0t.x());
|
||||
let mut e2 = difference_of_products(p0t.x(), p1t.y(), p0t.y(), p1t.x());
|
||||
|
||||
// if mem::size_of::<Float>() == mem::size_of::<f32>() && (e0 == 0.0 || e1 == 0.0 || e2 == 0.0)
|
||||
if e0 == 0.0 || e1 == 0.0 || e2 == 0.0 {
|
||||
let [p0t64, p1t64, p2t64] = [p0t.cast::<f64>(), p1t.cast::<f64>(), p2t.cast::<f64>()];
|
||||
|
||||
e0 = (p2t64.y() * p1t64.x() - p2t64.x() * p1t64.y()) as Float;
|
||||
e1 = (p0t64.y() * p2t64.x() - p0t64.x() * p2t64.y()) as Float;
|
||||
e2 = (p1t64.y() * p0t64.x() - p1t64.x() * p0t64.y()) as Float;
|
||||
}
|
||||
|
||||
if (e0 < 0. || e1 < 0. || e2 < 0.) && (e0 > 0. || e1 > 0. || e2 > 0.) {
|
||||
return None;
|
||||
}
|
||||
let det = e0 + e1 + e2;
|
||||
if det == 0. {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Compute scaled hit distance to triangle and test against ray
|
||||
p0t[2] *= sz;
|
||||
p1t[2] *= sz;
|
||||
p2t[2] *= sz;
|
||||
|
||||
let t_scaled = e0 * p0t.z() + e1 * p1t.z() + e2 * p2t.z();
|
||||
if det < 0. && (t_scaled >= 0. || t_scaled < t_max * det)
|
||||
|| (det > 0. && (t_scaled <= 0. || t_scaled > t_max * det))
|
||||
{
|
||||
return None;
|
||||
}
|
||||
|
||||
// Compute barycentric coordinates and value for triangle intersection
|
||||
let inv_det = 1. / det;
|
||||
let b0 = e0 * inv_det;
|
||||
let b1 = e1 * inv_det;
|
||||
let b2 = e2 * inv_det;
|
||||
let t = t_scaled * inv_det;
|
||||
|
||||
// Ensure that computed triangle is conservatively greater than zero
|
||||
let max_z_t = Vector3f::new(p0t.z(), p1t.z(), p2t.z())
|
||||
.abs()
|
||||
.max_component_value();
|
||||
let delta_z = gamma(3) * max_z_t;
|
||||
|
||||
let max_x_t = Vector3f::new(p0t.x(), p1t.x(), p2t.x())
|
||||
.abs()
|
||||
.max_component_value();
|
||||
let max_y_t = Vector3f::new(p0t.y(), p1t.y(), p2t.y())
|
||||
.abs()
|
||||
.max_component_value();
|
||||
let delta_x = gamma(5) * (max_x_t + max_z_t);
|
||||
let delta_y = gamma(5) * (max_y_t + max_z_t);
|
||||
|
||||
let delta_e = 2. * (gamma(2) * max_x_t * max_y_t + delta_y * max_x_t + delta_x * max_y_t);
|
||||
let max_e = Vector3f::new(e0, e1, e2).abs().max_component_value();
|
||||
let delta_t =
|
||||
3. * (gamma(3) * max_e * max_z_t + delta_e * max_z_t + delta_z * max_e) * inv_det.abs();
|
||||
|
||||
if t <= delta_t {
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(TriangleIntersection::new(b0, b1, b2, t))
|
||||
fn intersect_triangle(
|
||||
&self,
|
||||
_ray: &Ray,
|
||||
_t_max: Float,
|
||||
_p0: Point3f,
|
||||
_p1: Point3f,
|
||||
_p2: Point3f,
|
||||
) -> Option<TriangleIntersection> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn interaction_from_intersection(
|
||||
|
|
@ -184,233 +149,255 @@ impl TriangleShape {
|
|||
time: Float,
|
||||
wo: Vector3f,
|
||||
) -> SurfaceInteraction {
|
||||
let data = self.get_data();
|
||||
let [p0, p1, p2] = data.vertices;
|
||||
let [uv0, uv1, uv2] = data.uvs;
|
||||
// Compute triangle partial derivatives
|
||||
let (dpdu, dpdv, degenerate_uv, det) = self.compute_partials(data);
|
||||
// Interpolate (u, v) parametric coordinates and hit point
|
||||
let p_hit_vec =
|
||||
ti.b0 * Vector3f::from(p0) + ti.b1 * Vector3f::from(p1) + ti.b2 * Vector3f::from(p2);
|
||||
let p_hit = Point3f::from(p_hit_vec);
|
||||
let uv_hit_vec =
|
||||
ti.b0 * Vector2f::from(uv0) + ti.b1 * Vector2f::from(uv1) + ti.b2 * Vector2f::from(uv2);
|
||||
let uv_hit = Point2f::from(uv_hit_vec);
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
let uv = self.get_uvs().unwrap_or([
|
||||
Point2f::new(0.0, 0.0),
|
||||
Point2f::new(1.0, 0.0),
|
||||
Point2f::new(1.0, 1.0),
|
||||
]);
|
||||
let duv02 = uv[0] - uv[2];
|
||||
let duv12 = uv[1] - uv[2];
|
||||
let dp02 = p0 - p2;
|
||||
let dp12 = p1 - p2;
|
||||
let determinant = difference_of_products(duv02[0], duv12[1], duv02[1], duv12[0]);
|
||||
let degenerate = determinant.abs() < 1e-9;
|
||||
let (mut dpdu, mut dpdv) = if !degenerate {
|
||||
let invdet = 1. / determinant;
|
||||
let ret0 = difference_of_products(duv12[1], dp02, duv02[1], dp12) * invdet;
|
||||
let ret1 = difference_of_products(duv02[0], dp12, duv12[0], dp02) * invdet;
|
||||
(ret0, ret1)
|
||||
} else {
|
||||
(Vector3f::zero(), Vector3f::zero())
|
||||
};
|
||||
|
||||
// Return SurfaceInteraction for triangle hit>
|
||||
let flip_normal = data.reverse_orientation ^ data.transform_swaps_handedness;
|
||||
let p_abs_sum = (ti.b0 * Vector3f::from(p0)).abs()
|
||||
+ (ti.b1 * Vector3f::from(p1)).abs()
|
||||
+ (ti.b2 * Vector3f::from(p2)).abs();
|
||||
if degenerate || dpdu.cross(dpdv).norm_squared() == 0. {
|
||||
let mut ng = (p2 - p0).cross(p1 - p0);
|
||||
if ng.norm_squared() == 0. {
|
||||
let v1 = p2 - p0;
|
||||
let v2 = p1 - p0;
|
||||
ng = v1.cast::<f64>().cross(v2.cast::<f64>()).cast::<Float>();
|
||||
assert!(ng.norm_squared() != 0.);
|
||||
}
|
||||
(dpdu, dpdv) = ng.normalize().coordinate_system();
|
||||
}
|
||||
|
||||
let p0_vec = Vector3f::from(p0);
|
||||
let p1_vec = Vector3f::from(p1);
|
||||
let p2_vec = Vector3f::from(p2);
|
||||
let p_hit = Point3f::from(ti.b0 * p0_vec + ti.b1 * p1_vec + ti.b2 * p2_vec);
|
||||
let uv_hit = Point2f::from(
|
||||
ti.b0 * Vector2f::from(uv[0])
|
||||
+ ti.b1 * Vector2f::from(uv[1])
|
||||
+ ti.b2 * Vector2f::from(uv[2]),
|
||||
);
|
||||
|
||||
let p_abs_sum = (ti.b0 * p0_vec).abs() + (ti.b1 * p1_vec).abs() + (ti.b2 * p2_vec).abs();
|
||||
let p_error = gamma(7) * p_abs_sum;
|
||||
let mut ng = Normal3f::from(dp02.cross(dp12).normalize());
|
||||
|
||||
let flip_normal = self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness;
|
||||
if flip_normal {
|
||||
ng = -ng;
|
||||
}
|
||||
|
||||
let mut isect = SurfaceInteraction::new(
|
||||
Point3fi::new_with_error(p_hit, p_error),
|
||||
uv_hit,
|
||||
wo,
|
||||
dpdu,
|
||||
dpdv,
|
||||
Normal3f::default(),
|
||||
Normal3f::default(),
|
||||
Normal3f::zero(),
|
||||
Normal3f::zero(),
|
||||
time,
|
||||
flip_normal,
|
||||
);
|
||||
|
||||
isect.face_index = self
|
||||
.mesh()
|
||||
.face_indices
|
||||
.as_ref()
|
||||
.map_or(0, |fi| fi[self.tri_index]);
|
||||
isect.common.n = data.normal;
|
||||
isect.shading.n = isect.n();
|
||||
if flip_normal {
|
||||
isect.common.n = -isect.n();
|
||||
isect.shading.n = -isect.shading.n;
|
||||
}
|
||||
isect.face_index = if !self.mesh.face_indices.is_null() {
|
||||
unsafe { *self.mesh.face_indices.0.add(self.tri_index as usize) }
|
||||
} else {
|
||||
0
|
||||
};
|
||||
|
||||
if data.normals.is_some() || self.mesh().s.is_some() {
|
||||
self.apply_shading_normals(&mut isect, ti, data, degenerate_uv, det);
|
||||
}
|
||||
isect.common.n = ng;
|
||||
isect.shading.n = ng;
|
||||
|
||||
if !self.mesh.p.is_null() || !self.mesh.s.is_null() {
|
||||
self.compute_shading_geometry(&mut isect, &ti, uv, dpdu, determinant, degenerate);
|
||||
}
|
||||
isect
|
||||
}
|
||||
|
||||
fn compute_partials(&self, data: TriangleData) -> (Vector3f, Vector3f, bool, Float) {
|
||||
let [p0, p1, p2] = data.vertices;
|
||||
let [uv0, uv1, uv2] = data.uvs;
|
||||
let duv02 = uv0 - uv2;
|
||||
let duv12 = uv1 - uv2;
|
||||
let dp02 = p0 - p2;
|
||||
let dp12 = p1 - p2;
|
||||
let det = difference_of_products(duv02[0], duv12[1], duv02[1], duv12[0]);
|
||||
let degenerate_uv = det.abs() < 1e-9;
|
||||
let (dpdu, dpdv) = if !degenerate_uv {
|
||||
let inv_det = 1. / det;
|
||||
(
|
||||
(dp02 * duv12[1] - dp12 * duv02[1]) * inv_det,
|
||||
(dp12 * duv02[0] - dp02 * duv12[0]) * inv_det,
|
||||
)
|
||||
} else {
|
||||
let dp20 = p2 - p0;
|
||||
let dp10 = p1 - p0;
|
||||
let mut ng = dp20.cross(dp10);
|
||||
if ng.norm_squared() == 0. {
|
||||
ng = (dp20.cast::<f64>().cross(dp10.cast::<f64>())).cast();
|
||||
}
|
||||
let n = ng.normalize();
|
||||
n.coordinate_system()
|
||||
};
|
||||
(dpdu, dpdv, degenerate_uv, det)
|
||||
}
|
||||
|
||||
fn apply_shading_normals(
|
||||
fn compute_shading_geometry(
|
||||
&self,
|
||||
isect: &mut SurfaceInteraction,
|
||||
ti: TriangleIntersection,
|
||||
data: TriangleData,
|
||||
ti: &TriangleIntersection,
|
||||
uv: [Point2f; 3],
|
||||
dpdu_geom: Vector3f,
|
||||
determinant: Float,
|
||||
degenerate_uv: bool,
|
||||
det: Float,
|
||||
) {
|
||||
let Some([n0, n1, n2]) = data.normals else {
|
||||
return;
|
||||
};
|
||||
let [uv0, uv1, uv2] = data.uvs;
|
||||
let duv02 = uv0 - uv2;
|
||||
let duv12 = uv1 - uv2;
|
||||
|
||||
let ns = ti.b0 * n0 + ti.b1 * n1 + ti.b2 * n2;
|
||||
let ns = if ns.norm_squared() > 0. {
|
||||
ns.normalize()
|
||||
// Interpolate vertex normals if they exist
|
||||
let ns = if let Some(normals) = self.get_shading_normals() {
|
||||
let n = ti.b0 * normals[0] + ti.b1 * normals[1] + ti.b2 * normals[2];
|
||||
if n.norm_squared() > 0.0 {
|
||||
n.normalize()
|
||||
} else {
|
||||
isect.n()
|
||||
}
|
||||
} else {
|
||||
isect.n()
|
||||
};
|
||||
|
||||
let mut ss = self.mesh().s.as_ref().map_or(isect.dpdu, |s| {
|
||||
let indices = &self.mesh().vertex_indices[3 * self.tri_index..3 * self.tri_index + 3];
|
||||
let interp_s = ti.b0 * s[indices[0]] + ti.b1 * s[indices[1]] + ti.b2 * s[indices[2]];
|
||||
|
||||
if interp_s.norm_squared() > 0. {
|
||||
interp_s
|
||||
// Interpolate tangents if they exist
|
||||
let mut ss = if let Some(tangents) = self.get_tangents() {
|
||||
let s = ti.b0 * tangents[0] + ti.b1 * tangents[1] + ti.b2 * tangents[2];
|
||||
if s.norm_squared() > 0.0 {
|
||||
s.normalize()
|
||||
} else {
|
||||
isect.dpdu
|
||||
}
|
||||
});
|
||||
|
||||
let mut ts = Vector3f::from(ns).cross(ss);
|
||||
if ts.norm_squared() > 0. {
|
||||
ss = ts.cross(Vector3f::from(ns));
|
||||
} else {
|
||||
(ss, ts) = Vector3f::from(ns).coordinate_system();
|
||||
}
|
||||
let (dndu, dndv) = if degenerate_uv {
|
||||
let dn = (n2 - n0).cross(n1 - n0);
|
||||
if dn.norm_squared() == 0. {
|
||||
(Normal3f::zero(), Normal3f::zero())
|
||||
} else {
|
||||
dn.coordinate_system()
|
||||
dpdu_geom
|
||||
}
|
||||
} else {
|
||||
let inv_det = 1. / det;
|
||||
let dn02 = n0 - n2;
|
||||
let dn12 = n1 - n2;
|
||||
(
|
||||
(dn02 * duv12[1] - dn12 * duv02[1]) * inv_det,
|
||||
(dn12 * duv02[0] - dn02 * duv12[0]) * inv_det,
|
||||
)
|
||||
dpdu_geom
|
||||
};
|
||||
|
||||
isect.shading.n = ns;
|
||||
isect.shading.dpdu = ss;
|
||||
isect.shading.dpdv = ts;
|
||||
isect.dndu = dndu;
|
||||
isect.dndv = dndv;
|
||||
// Ensure shading tangent (ss) is perpendicular to shading normal (ns)
|
||||
let mut ts = ns.cross(ss.into());
|
||||
if ts.norm_squared() > 0.0 {
|
||||
ss = ts.cross(ns.into()).into();
|
||||
} else {
|
||||
let (s, t) = ns.coordinate_system();
|
||||
ss = s.into();
|
||||
ts = t.into();
|
||||
}
|
||||
|
||||
// How does the normal change as we move across UVs?
|
||||
let (dndu, dndv) = if let Some(normals) = self.get_shading_normals() {
|
||||
if degenerate_uv {
|
||||
let dn = (normals[2] - normals[0]).cross(normals[1] - normals[0]);
|
||||
if dn.norm_squared() == 0.0 {
|
||||
(Normal3f::zero(), Normal3f::zero())
|
||||
} else {
|
||||
let (dnu, dnv) = dn.coordinate_system();
|
||||
(Normal3f::from(dnu), Normal3f::from(dnv))
|
||||
}
|
||||
} else {
|
||||
let dn1 = normals[0] - normals[2];
|
||||
let dn2 = normals[1] - normals[2];
|
||||
let duv02 = uv[0] - uv[2];
|
||||
let duv12 = uv[1] - uv[2];
|
||||
|
||||
let inv_det = 1.0 / determinant;
|
||||
(
|
||||
difference_of_products(duv12[1], dn1, duv02[1], dn2) * inv_det,
|
||||
difference_of_products(duv02[0], dn2, duv12[0], dn1) * inv_det,
|
||||
)
|
||||
}
|
||||
} else {
|
||||
(Normal3f::zero(), Normal3f::zero())
|
||||
};
|
||||
|
||||
isect.set_shading_geom(ns, ss, ts.into(), dndu, dndv, true);
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeTrait for TriangleShape {
|
||||
fn bounds(&self) -> Bounds3f {
|
||||
let [p0, p1, p2] = self.get_data().vertices;
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
Bounds3f::from_points(p0, p1).union_point(p2)
|
||||
}
|
||||
|
||||
fn normal_bounds(&self) -> DirectionCone {
|
||||
let data = self.get_data();
|
||||
let mut n = data.normal;
|
||||
if let Some([n0, n1, n2]) = data.normals {
|
||||
n = n.face_forward((n0 + n1 + n2).into());
|
||||
} else if data.reverse_orientation ^ data.transform_swaps_handedness {
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
let mut n: Normal3f = (p1 - p0).cross(p2 - p0).normalize().into();
|
||||
|
||||
if let Some(normals) = self.get_shading_normals() {
|
||||
let [n0, n1, n2] = normals;
|
||||
let ns = n0 + n1 + n2;
|
||||
n = n.face_forward(ns);
|
||||
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
||||
n = -n;
|
||||
}
|
||||
DirectionCone::new_from_vector(Vector3f::from(n))
|
||||
|
||||
DirectionCone::new_from_vector(n.into())
|
||||
}
|
||||
|
||||
fn area(&self) -> Float {
|
||||
self.get_data().area
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
0.5 * (p1 - p0).cross(p2 - p0).norm()
|
||||
}
|
||||
|
||||
fn pdf(&self, _interaction: &Interaction) -> Float {
|
||||
1. / self.area()
|
||||
fn sample(&self, u: Point2f) -> Option<ShapeSample> {
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
let b = sample_uniform_triangle(u);
|
||||
let p = p0 + b[1] * (p1 - p0) + b[2] * (p2 - p0);
|
||||
|
||||
let mut n: Normal3f = (p1 - p0).cross(p2 - p0).normalize().into();
|
||||
|
||||
if let Some(normals) = self.get_shading_normals() {
|
||||
let [n0, n1, n2] = normals;
|
||||
let ns = b[0] * n0 + b[1] * n1 + b[2] * n2; // b[2] is (1 - b0 - b1)
|
||||
n = n.face_forward(ns);
|
||||
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
||||
n = -n;
|
||||
}
|
||||
|
||||
let uv_sample = if let Some(uvs) = self.get_uvs() {
|
||||
let [uv0, uv1, uv2] = uvs;
|
||||
uv0 + b[1] * (uv1 - uv0) + b[2] * (uv2 - uv0)
|
||||
} else {
|
||||
let v = b[0] * Vector2f::new(0.0, 0.0)
|
||||
+ b[1] * Vector2f::new(1.0, 0.0)
|
||||
+ b[2] * Vector2f::new(1.0, 1.0);
|
||||
Point2f::from(v)
|
||||
};
|
||||
|
||||
let p0_v = Vector3f::from(p0);
|
||||
let p1_v = Vector3f::from(p1);
|
||||
let p2_v = Vector3f::from(p2);
|
||||
let p_abs_sum = (b[0] * p0_v).abs() + (b[1] * p1_v).abs() + (b[2] * p2_v).abs();
|
||||
|
||||
let p_error = Vector3f::from(p_abs_sum) * gamma(6);
|
||||
|
||||
let intr_base = InteractionBase::new_surface_geom(
|
||||
Point3fi::new_with_error(p, p_error),
|
||||
n,
|
||||
uv_sample,
|
||||
Vector3f::default(),
|
||||
0.,
|
||||
);
|
||||
|
||||
Some(ShapeSample {
|
||||
intr: Interaction::Simple(SimpleInteraction::new(intr_base)),
|
||||
pdf: 1.0 / self.area(),
|
||||
})
|
||||
}
|
||||
|
||||
fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float {
|
||||
fn sample_from_context(&self, ctx: &ShapeSampleContext, mut u: Point2f) -> Option<ShapeSample> {
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
|
||||
let (b, tri_pdf) = sample_spherical_triangle(&[p0, p1, p2], ctx.p(), u)?;
|
||||
if tri_pdf == 0. {
|
||||
return None;
|
||||
}
|
||||
|
||||
let solid_angle = self.solid_angle(ctx.p());
|
||||
if (Self::MIN_SPHERICAL_SAMPLE_AREA..Self::MAX_SPHERICAL_SAMPLE_AREA).contains(&solid_angle)
|
||||
if solid_angle < Self::MIN_SPHERICAL_SAMPLE_AREA
|
||||
|| solid_angle > Self::MAX_SPHERICAL_SAMPLE_AREA
|
||||
{
|
||||
let ray = ctx.spawn_ray(wi);
|
||||
return self.intersect(&ray, None).map_or(0., |isect| {
|
||||
let absdot = Vector3f::from(isect.intr.n()).dot(-wi).abs();
|
||||
let d2 = ctx.p().distance_squared(isect.intr.p());
|
||||
let pdf = 1. / self.area() * (d2 / absdot);
|
||||
if pdf.is_infinite() { 0. } else { pdf }
|
||||
});
|
||||
let mut ss = self.sample(u)?;
|
||||
ss.intr.get_common_mut().time = ctx.time;
|
||||
let mut wi: Normal3f = (ss.intr.p() - ctx.p()).into();
|
||||
if wi.norm_squared() == 0. {
|
||||
return None;
|
||||
}
|
||||
wi = wi.normalize();
|
||||
ss.pdf /= ss.intr.n().abs_dot(-wi) / ctx.p().distance_squared(ss.intr.p());
|
||||
if ss.pdf.is_infinite() {
|
||||
return None;
|
||||
}
|
||||
return Some(ss);
|
||||
}
|
||||
|
||||
let mut pdf = 1. / solid_angle;
|
||||
if ctx.ns != Normal3f::zero() {
|
||||
let [p0, p1, p2] = self.get_data().vertices;
|
||||
let u = invert_spherical_triangle_sample(&[p0, p1, p2], ctx.p(), wi)
|
||||
.unwrap_or(Point2f::zero());
|
||||
|
||||
let rp = ctx.p();
|
||||
let wi: [Vector3f; 3] = [
|
||||
(p0 - rp).normalize(),
|
||||
(p1 - rp).normalize(),
|
||||
(p2 - rp).normalize(),
|
||||
];
|
||||
let w: [Float; 4] = [
|
||||
0.01_f32.max(ctx.ns.dot(wi[1].into()).abs()),
|
||||
0.01_f32.max(ctx.ns.dot(wi[1].into()).abs()),
|
||||
0.01_f32.max(ctx.ns.dot(wi[0].into()).abs()),
|
||||
0.01_f32.max(ctx.ns.dot(wi[2].into()).abs()),
|
||||
];
|
||||
pdf *= bilinear_pdf(u, &w);
|
||||
}
|
||||
pdf
|
||||
}
|
||||
|
||||
fn sample_from_context(&self, ctx: &ShapeSampleContext, u: Point2f) -> Option<ShapeSample> {
|
||||
let data = self.get_data();
|
||||
let [p0, p1, p2] = data.vertices;
|
||||
let solid_angle = self.solid_angle(ctx.p());
|
||||
if (Self::MIN_SPHERICAL_SAMPLE_AREA..Self::MAX_SPHERICAL_SAMPLE_AREA).contains(&solid_angle)
|
||||
{
|
||||
// Sample shape by area and compute incident direction wi
|
||||
return self.sample(u).and_then(|mut ss| {
|
||||
let mut intr_clone = (*ss.intr).clone();
|
||||
intr_clone.common.time = ctx.time;
|
||||
ss.intr = Arc::new(intr_clone);
|
||||
|
||||
let wi = (ss.intr.p() - ctx.p()).normalize();
|
||||
if wi.norm_squared() == 0. {
|
||||
return None;
|
||||
}
|
||||
let absdot = Vector3f::from(ss.intr.n()).abs_dot(-wi);
|
||||
let d2 = ctx.p().distance_squared(ss.intr.p());
|
||||
ss.pdf /= absdot / d2;
|
||||
if ss.pdf.is_infinite() { None } else { Some(ss) }
|
||||
});
|
||||
}
|
||||
|
||||
// Sample spherical triangle from reference point
|
||||
let mut pdf = 1.;
|
||||
if ctx.ns != Normal3f::zero() {
|
||||
let rp = ctx.p();
|
||||
|
|
@ -420,93 +407,112 @@ impl ShapeTrait for TriangleShape {
|
|||
(p2 - rp).normalize(),
|
||||
];
|
||||
let w: [Float; 4] = [
|
||||
0.01_f32.max(ctx.ns.dot(wi[1].into()).abs()),
|
||||
0.01_f32.max(ctx.ns.dot(wi[1].into()).abs()),
|
||||
0.01_f32.max(ctx.ns.dot(wi[0].into()).abs()),
|
||||
0.01_f32.max(ctx.ns.dot(wi[2].into()).abs()),
|
||||
ctx.ns.abs_dot(wi[1].into()).max(0.01),
|
||||
ctx.ns.abs_dot(wi[1].into()).max(0.01),
|
||||
ctx.ns.abs_dot(wi[0].into()).max(0.01),
|
||||
ctx.ns.abs_dot(wi[2].into()).max(0.01),
|
||||
];
|
||||
|
||||
let u = sample_bilinear(u, &w);
|
||||
u = sample_bilinear(u, &w);
|
||||
pdf = bilinear_pdf(u, &w);
|
||||
}
|
||||
|
||||
let (b, tri_pdf) = sample_spherical_triangle(&[p0, p1, p2], ctx.p(), u)?;
|
||||
if tri_pdf == 0. {
|
||||
return None;
|
||||
}
|
||||
pdf *= tri_pdf;
|
||||
let b2 = 1. - b[0] - b[1];
|
||||
let p0_v = Vector3f::from(p0);
|
||||
let p1_v = Vector3f::from(p1);
|
||||
let p2_v = Vector3f::from(p2);
|
||||
let p_abs_sum = (b[0] * p0_v).abs() + (b[1] * p1_v).abs() + (b[2] * p2_v).abs();
|
||||
let mut n: Normal3f = (p1 - p0).cross(p2 - p0).normalize().into();
|
||||
|
||||
let p_abs_sum = b[0] * Vector3f::from(p0)
|
||||
+ b[1] * Vector3f::from(p1)
|
||||
+ (1. - b[0] - b[1]) * Vector3f::from(p2);
|
||||
let p_error = gamma(6) * p_abs_sum;
|
||||
// Return ShapeSample for solid angle sampled point on triangle
|
||||
let p_vec =
|
||||
b[0] * Vector3f::from(p0) + b[1] * Vector3f::from(p1) + b[2] * Vector3f::from(p2);
|
||||
let p = Point3f::from(p_vec);
|
||||
let mut n = Normal3f::from((p1 - p0).cross(p2 - p0).normalize());
|
||||
if let Some([n0, n1, n2]) = data.normals {
|
||||
let ns = b[0] * n0 + b[1] * n1 + b2 * n2;
|
||||
n = n.face_forward(ns.into());
|
||||
} else if data.reverse_orientation ^ data.transform_swaps_handedness {
|
||||
if let Some(normals) = self.get_shading_normals() {
|
||||
let [n0, n1, n2] = normals;
|
||||
let ns = b[0] * n0 + b[1] * n1 + (1. - b[0] - b[1]) * n2;
|
||||
n = n.face_forward(ns);
|
||||
} else if self.mesh.reverse_orientation ^ self.mesh.transform_swaps_handedness {
|
||||
n = -n;
|
||||
}
|
||||
|
||||
let [uv0, uv1, uv2] = data.uvs;
|
||||
let uv_sample_vec =
|
||||
b[0] * Vector2f::from(uv0) + b[1] * Vector2f::from(uv1) + b[2] * Vector2f::from(uv2);
|
||||
let uv_sample = Point2f::from(uv_sample_vec);
|
||||
let pi = Point3fi::new_with_error(p, p_error);
|
||||
let mut si = SurfaceInteraction::new_simple(pi, n, uv_sample);
|
||||
si.common.time = ctx.time;
|
||||
let uv_sample = if let Some(uvs) = self.get_uvs() {
|
||||
let [uv0, uv1, uv2] = uvs;
|
||||
uv0 + b[1] * (uv1 - uv0) + b[2] * (uv2 - uv0)
|
||||
} else {
|
||||
let v = b[0] * Vector2f::new(0.0, 0.0)
|
||||
+ b[1] * Vector2f::new(1.0, 0.0)
|
||||
+ b[2] * Vector2f::new(1.0, 1.0);
|
||||
Point2f::from(v)
|
||||
};
|
||||
|
||||
let p = p0 + b[1] * (p1 - p0) + b[2] * (p2 - p0);
|
||||
let p_error = Vector3f::from(p_abs_sum) * gamma(6);
|
||||
let intr_base = InteractionBase::new_surface_geom(
|
||||
Point3fi::new_with_error(p, p_error),
|
||||
n,
|
||||
uv_sample,
|
||||
Vector3f::default(),
|
||||
0.,
|
||||
);
|
||||
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(si),
|
||||
intr: Interaction::Simple(SimpleInteraction::new(intr_base)),
|
||||
pdf,
|
||||
})
|
||||
}
|
||||
|
||||
fn sample(&self, u: Point2f) -> Option<ShapeSample> {
|
||||
let data = self.get_data();
|
||||
let [p0, p1, p2] = data.vertices;
|
||||
let [uv0, uv1, uv2] = data.uvs;
|
||||
let b = sample_uniform_triangle(u);
|
||||
let p_vec =
|
||||
b[0] * Vector3f::from(p0) + b[1] * Vector3f::from(p1) + b[2] * Vector3f::from(p2);
|
||||
let b2 = 1. - b[0] - b[1];
|
||||
let p = Point3f::from(p_vec);
|
||||
let mut n = data.normal;
|
||||
if let Some([n0, n1, n2]) = data.normals {
|
||||
let interp_n = b[0] * n0 + b[1] * n1 + b2 * n2;
|
||||
n = n.face_forward(interp_n.into());
|
||||
} else if data.reverse_orientation ^ data.transform_swaps_handedness {
|
||||
n = -n;
|
||||
}
|
||||
|
||||
let uv_sample_vec =
|
||||
b[0] * Vector2f::from(uv0) + b[1] * Vector2f::from(uv1) + b[2] * Vector2f::from(uv2);
|
||||
let uv_sample = Point2f::from(uv_sample_vec);
|
||||
let p_abs_sum = (b[0] * Vector3f::from(p0)).abs()
|
||||
+ (b[1] * Vector3f::from(p1)).abs()
|
||||
+ ((1. - b[0] - b[1]) * Vector3f::from(p2)).abs();
|
||||
let p_error = gamma(6) * p_abs_sum;
|
||||
let pi = Point3fi::new_with_error(p, p_error);
|
||||
Some(ShapeSample {
|
||||
intr: Arc::new(SurfaceInteraction::new_simple(pi, n, uv_sample)),
|
||||
pdf: 1. / self.area(),
|
||||
})
|
||||
}
|
||||
|
||||
fn intersect(&self, ray: &Ray, t_max: Option<Float>) -> Option<ShapeIntersection> {
|
||||
self.intersect_triangle(ray, t_max.unwrap_or(Float::INFINITY))
|
||||
.map(|ti| {
|
||||
let intr = self.interaction_from_intersection(ti, ray.time, -ray.d);
|
||||
ShapeIntersection { intr, t_hit: ti.t }
|
||||
})
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
let tri_isect = self.intersect_triangle(ray, t_max.unwrap_or(0.), p0, p1, p2)?;
|
||||
let intr = self.interaction_from_intersection(tri_isect, ray.time, -ray.d);
|
||||
Some(ShapeIntersection::new(intr, tri_isect.t))
|
||||
}
|
||||
|
||||
fn intersect_p(&self, ray: &Ray, t_max: Option<Float>) -> bool {
|
||||
self.intersect_triangle(ray, t_max.unwrap_or(Float::INFINITY))
|
||||
.is_some()
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
let tri_isect = self.intersect_triangle(ray, t_max.unwrap_or(0.), p0, p1, p2);
|
||||
tri_isect.is_some()
|
||||
}
|
||||
|
||||
fn pdf(&self, _interaction: &Interaction) -> Float {
|
||||
1. / self.area()
|
||||
}
|
||||
|
||||
fn pdf_from_context(&self, ctx: &ShapeSampleContext, wi: Vector3f) -> Float {
|
||||
let solid_angle = self.solid_angle(ctx.p());
|
||||
|
||||
if solid_angle < Self::MIN_SPHERICAL_SAMPLE_AREA
|
||||
|| solid_angle > Self::MAX_SPHERICAL_SAMPLE_AREA
|
||||
{
|
||||
let ray = ctx.spawn_ray(wi);
|
||||
let Some(isect) = self.intersect(&ray, None) else {
|
||||
return 0.;
|
||||
};
|
||||
|
||||
let pdf = (1. / self.area())
|
||||
/ (isect.intr.n().abs_dot(-Normal3f::from(wi))
|
||||
/ ctx.p().distance_squared(isect.intr.p()));
|
||||
|
||||
if pdf.is_infinite() {
|
||||
return 0.;
|
||||
}
|
||||
return pdf;
|
||||
}
|
||||
|
||||
let mut pdf = 1. / solid_angle;
|
||||
if ctx.ns != Normal3f::zero() {
|
||||
let [p0, p1, p2] = self.get_points();
|
||||
let u = invert_spherical_triangle_sample(&[p0, p1, p2], ctx.p(), wi)
|
||||
.expect("Could not calculate inverse sample");
|
||||
let rp = ctx.p();
|
||||
let wi = [
|
||||
(p0 - rp).normalize(),
|
||||
(p1 - rp).normalize(),
|
||||
(p2 - rp).normalize(),
|
||||
];
|
||||
let w: [Float; 4] = [
|
||||
ctx.ns.abs_dot(wi[1].into()).max(0.01),
|
||||
ctx.ns.abs_dot(wi[1].into()).max(0.01),
|
||||
ctx.ns.abs_dot(wi[0].into()).max(0.01),
|
||||
ctx.ns.abs_dot(wi[2].into()).max(0.01),
|
||||
];
|
||||
pdf *= bilinear_pdf(u, &w);
|
||||
}
|
||||
pdf
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1462,7 +1462,7 @@ pub const CIE_D65: [Float; 95] = [
|
|||
N!(115.392),
|
||||
N!(115.923),
|
||||
N!(112.367),
|
||||
N(108.811),
|
||||
N!(108.811),
|
||||
N!(109.082),
|
||||
N!(109.354),
|
||||
N!(108.578),
|
||||
|
|
|
|||
|
|
@ -3,31 +3,28 @@ use crate::core::geometry::Point2f;
|
|||
use crate::core::pbrt::Float;
|
||||
use crate::spectra::{DenselySampledSpectrum, SampledSpectrum};
|
||||
use crate::utils::math::SquareMatrix3f;
|
||||
|
||||
use once_cell::sync::Lazy;
|
||||
use crate::utils::ptr::Ptr;
|
||||
|
||||
use std::cmp::{Eq, PartialEq};
|
||||
use std::error::Error;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct StandardColorSpaces {
|
||||
pub srgb: *const RGBColorSpace,
|
||||
pub dci_p3: *const RGBColorSpace,
|
||||
pub rec2020: *const RGBColorSpace,
|
||||
pub aces2065_1: *const RGBColorSpace,
|
||||
pub srgb: Ptr<RGBColorSpace>,
|
||||
pub dci_p3: Ptr<RGBColorSpace>,
|
||||
pub rec2020: Ptr<RGBColorSpace>,
|
||||
pub aces2065_1: Ptr<RGBColorSpace>,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct RGBColorSpace {
|
||||
pub r: Point2f,
|
||||
pub g: Point2f,
|
||||
pub b: Point2f,
|
||||
pub w: Point2f,
|
||||
pub illuminant: DenselySampledSpectrum,
|
||||
pub rgb_to_spectrum_table: *const RGBToSpectrumTable,
|
||||
pub rgb_to_spectrum_table: Ptr<RGBToSpectrumTable>,
|
||||
pub xyz_from_rgb: SquareMatrix3f,
|
||||
pub rgb_from_xyz: SquareMatrix3f,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ pub mod simple;
|
|||
|
||||
use crate::core::pbrt::Float;
|
||||
|
||||
pub use colorspace::RGBColorSpace;
|
||||
pub use colorspace::{RGBColorSpace, StandardColorSpaces};
|
||||
pub use rgb::*;
|
||||
pub use sampled::{CIE_Y_INTEGRAL, LAMBDA_MAX, LAMBDA_MIN};
|
||||
pub use sampled::{N_SPECTRUM_SAMPLES, SampledSpectrum, SampledWavelengths};
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@ use super::{
|
|||
};
|
||||
use crate::core::color::{RGB, RGBSigmoidPolynomial, XYZ};
|
||||
use crate::core::spectrum::SpectrumTrait;
|
||||
use crate::utils::Ptr;
|
||||
|
||||
use crate::Float;
|
||||
|
||||
|
|
@ -68,13 +69,12 @@ impl SpectrumTrait for UnboundedRGBSpectrum {
|
|||
pub struct RGBIlluminantSpectrum {
|
||||
pub scale: Float,
|
||||
pub rsp: RGBSigmoidPolynomial,
|
||||
pub illuminant: DenselySampledSpectrum,
|
||||
pub illuminant: Ptr<DenselySampledSpectrum>,
|
||||
}
|
||||
|
||||
impl RGBIlluminantSpectrum {
|
||||
pub fn new(cs: &RGBColorSpace, rgb: RGB) -> Self {
|
||||
let illuminant = &cs.illuminant;
|
||||
let densely_sampled = DenselySampledSpectrum::from_spectrum(illuminant);
|
||||
let illuminant = cs.illuminant;
|
||||
let m = rgb.max_component_value();
|
||||
let scale = 2. * m;
|
||||
let rsp = cs.to_rgb_coeffs(if scale == 1. {
|
||||
|
|
@ -85,33 +85,31 @@ impl RGBIlluminantSpectrum {
|
|||
Self {
|
||||
scale,
|
||||
rsp,
|
||||
illuminant,
|
||||
illuminant: Ptr::from(&illuminant),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SpectrumTrait for RGBIlluminantSpectrum {
|
||||
fn evaluate(&self, lambda: Float) -> Float {
|
||||
match &self.illuminant {
|
||||
Some(illuminant) => {
|
||||
self.scale * self.rsp.evaluate(lambda) * illuminant.evaluate(lambda)
|
||||
}
|
||||
None => 0.0,
|
||||
if self.illuminant.is_null() {
|
||||
return 0.;
|
||||
}
|
||||
self.scale * self.rsp.evaluate(lambda) * self.illuminant.evaluate(lambda)
|
||||
}
|
||||
|
||||
fn sample(&self, lambda: &SampledWavelengths) -> SampledSpectrum {
|
||||
if self.illuminant.is_none() {
|
||||
if self.illuminant.is_null() {
|
||||
return SampledSpectrum::new(0.);
|
||||
}
|
||||
SampledSpectrum::from_fn(|i| self.scale * self.rsp.evaluate(lambda[i]))
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Float {
|
||||
match &self.illuminant {
|
||||
Some(illuminant) => self.scale * self.rsp.max_value() * illuminant.max_value(),
|
||||
None => 0.0,
|
||||
if self.illuminant.is_null() {
|
||||
return 0.;
|
||||
}
|
||||
self.scale * self.rsp.max_value() * self.illuminant.max_value()
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,14 +1,18 @@
|
|||
use crate::Float;
|
||||
use crate::core::spectrum::Spectrum;
|
||||
use crate::core::spectrum::SpectrumTrait;
|
||||
use crate::core::texture::{TextureEvalContext, TextureMapping2D};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths, SpectrumTrait};
|
||||
use crate::utils::Transform;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::{Ptr, Transform};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct FloatBilerpTexture {
|
||||
mapping: TextureMapping2D,
|
||||
v00: Float,
|
||||
v01: Float,
|
||||
v10: Float,
|
||||
v11: Float,
|
||||
pub mapping: TextureMapping2D,
|
||||
pub v00: Float,
|
||||
pub v01: Float,
|
||||
pub v10: Float,
|
||||
pub v11: Float,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
|
|
@ -40,22 +44,23 @@ impl FloatBilerpTexture {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct SpectrumBilerpTexture {
|
||||
pub mapping: TextureMapping2D,
|
||||
pub v00: Spectrum,
|
||||
pub v01: Spectrum,
|
||||
pub v10: Spectrum,
|
||||
pub v11: Spectrum,
|
||||
pub v00: Ptr<Spectrum>,
|
||||
pub v01: Ptr<Spectrum>,
|
||||
pub v10: Ptr<Spectrum>,
|
||||
pub v11: Ptr<Spectrum>,
|
||||
}
|
||||
|
||||
impl SpectrumBilerpTexture {
|
||||
pub fn new(
|
||||
mapping: TextureMapping2D,
|
||||
v00: Spectrum,
|
||||
v01: Spectrum,
|
||||
v10: Spectrum,
|
||||
v11: Spectrum,
|
||||
v00: Ptr<Spectrum>,
|
||||
v01: Ptr<Spectrum>,
|
||||
v10: Ptr<Spectrum>,
|
||||
v11: Ptr<Spectrum>,
|
||||
) -> Self {
|
||||
Self {
|
||||
mapping,
|
||||
|
|
@ -69,16 +74,16 @@ impl SpectrumBilerpTexture {
|
|||
pub fn evaluate(
|
||||
&self,
|
||||
ctx: &TextureEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
let c = self.mapping.map(ctx);
|
||||
bilerp(
|
||||
[c.st[0], c.st[1], c.st[2]],
|
||||
[c.st[0], c.st[1]],
|
||||
[
|
||||
v00.sample(lambda),
|
||||
v01.sample(lambda),
|
||||
v10.sample(lambda),
|
||||
v11.sample(lambda),
|
||||
self.v00.sample(lambda),
|
||||
self.v01.sample(lambda),
|
||||
self.v10.sample(lambda),
|
||||
self.v11.sample(lambda),
|
||||
],
|
||||
)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,29 +1,105 @@
|
|||
use crate::core::texture::TextureEvalContext;
|
||||
use crate::Float;
|
||||
use crate::core::texture::{
|
||||
GPUFloatTexture, GPUSpectrumTexture, TextureEvalContext, TextureMapping2D, TextureMapping3D,
|
||||
TextureMapping3DTrait,
|
||||
};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::{Ptr, RelPtr, math::square};
|
||||
|
||||
// TODO: I have to implement somethign like a TaggedPointer, and change the whole codebase.
|
||||
// Fantastic
|
||||
#[derive(Debug, Clone)]
|
||||
fn checkerboard(
|
||||
ctx: &TextureEvalContext,
|
||||
map2d: Ptr<TextureMapping2D>,
|
||||
map3d: Ptr<TextureMapping3D>,
|
||||
) -> Float {
|
||||
let d = |x: Float| -> Float {
|
||||
let y = x / 2. - (x / 2.).floor() - 0.5;
|
||||
return x / 2. + y * (1. - 2. * y.abs());
|
||||
};
|
||||
|
||||
let bf = |x: Float, r: Float| -> Float {
|
||||
if (x.floor() - r) == (x + r).floor() {
|
||||
return 1. - 2. * (x.floor() as i32 & 1) as Float;
|
||||
}
|
||||
(d(x + r) - 2. * d(x) + d(x - r)) / square(r)
|
||||
};
|
||||
|
||||
if !map2d.is_null() {
|
||||
assert!(map3d.is_null());
|
||||
let c = map2d.map(&ctx);
|
||||
let ds = 1.5 * c.dsdx.abs().max(c.dsdy.abs());
|
||||
let dt = 1.5 * c.dtdx.abs().max(c.dtdy.abs());
|
||||
// Integrate product of 2D checkerboard function and triangle filter
|
||||
0.5 - bf(c.st[0], ds) * bf(c.st[1], dt) / 2.
|
||||
} else {
|
||||
assert!(!map3d.is_null());
|
||||
let c = map3d.map(&ctx);
|
||||
let dx = 1.5 * c.dpdx.x().abs().max(c.dpdy.x().abs());
|
||||
let dy = 1.5 * c.dpdx.y().abs().max(c.dpdy.y().abs());
|
||||
let dz = 1.5 * c.dpdx.z().abs().max(c.dpdy.z().abs());
|
||||
0.5 - bf(c.p.x(), dx) * bf(c.p.y(), dy) * bf(c.p.z(), dz)
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct FloatCheckerboardTexture {
|
||||
pub map_2d: TextureMapping2D,
|
||||
pub map_3d: TextureMapping3D,
|
||||
pub tex: [FloatTexture; 2],
|
||||
pub map2d: Ptr<TextureMapping2D>,
|
||||
pub map3d: Ptr<TextureMapping3D>,
|
||||
pub tex: [RelPtr<GPUFloatTexture>; 2],
|
||||
}
|
||||
|
||||
impl FloatCheckerboardTexture {
|
||||
pub fn evaluate(&self, _ctx: &TextureEvalContext) -> Float {
|
||||
todo!()
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
let w = checkerboard(&ctx, self.map2d, self.map3d);
|
||||
|
||||
let mut t0 = 0.0;
|
||||
let mut t1 = 0.0;
|
||||
|
||||
if w != 1.0 {
|
||||
if let Some(tex) = self.tex[0].get() {
|
||||
t0 = tex.evaluate(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
if w != 0.0 {
|
||||
if let Some(tex) = self.tex[1].get() {
|
||||
t1 = tex.evaluate(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
(1.0 - w) * t0 + w * t1
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SpectrumCheckerboardTexture;
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct SpectrumCheckerboardTexture {
|
||||
pub map2d: Ptr<TextureMapping2D>,
|
||||
pub map3d: Ptr<TextureMapping3D>,
|
||||
pub tex: [RelPtr<GPUSpectrumTexture>; 2],
|
||||
}
|
||||
|
||||
impl SpectrumCheckerboardTexture {
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
_ctx: &TextureEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
ctx: &TextureEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
todo!()
|
||||
let w = checkerboard(ctx, self.map2d, self.map3d);
|
||||
let mut t0 = SampledSpectrum::new(0.);
|
||||
let mut t1 = SampledSpectrum::new(0.);
|
||||
if w != 1.0 {
|
||||
if let Some(tex) = self.tex[0].get() {
|
||||
t0 = tex.evaluate(ctx, lambda);
|
||||
}
|
||||
}
|
||||
|
||||
if w != 0.0 {
|
||||
if let Some(tex) = self.tex[1].get() {
|
||||
t1 = tex.evaluate(ctx, lambda);
|
||||
}
|
||||
}
|
||||
|
||||
t0 * (1.0 - w) + t1 * w
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,8 +1,10 @@
|
|||
use crate::Float;
|
||||
use crate::core::spectrum::{Spectrum, SpectrumTrait};
|
||||
use crate::core::texture::TextureEvalContext;
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths, Spectrum};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct FloatConstantTexture {
|
||||
pub value: Float,
|
||||
}
|
||||
|
|
@ -17,7 +19,8 @@ impl FloatConstantTexture {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct SpectrumConstantTexture {
|
||||
pub value: Spectrum,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,19 +1,75 @@
|
|||
#[derive(Debug, Clone)]
|
||||
pub struct FloatDotsTexture;
|
||||
use crate::Float;
|
||||
use crate::core::geometry::{Point2f, VectorLike};
|
||||
use crate::core::texture::{
|
||||
GPUFloatTexture, GPUSpectrumTexture, TextureEvalContext, TextureMapping2D,
|
||||
};
|
||||
use crate::spectra::sampled::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
use crate::utils::math::square;
|
||||
use crate::utils::noise::noise_2d;
|
||||
|
||||
fn inside_polka_dot(st: Point2f) -> bool {
|
||||
let s_cell = (st[0] + 0.5).floor();
|
||||
let t_cell = (st[1] + 0.5).floor();
|
||||
if noise_2d(s_cell + 0.5, t_cell + 0.5) > 0. {
|
||||
let radius = 0.35;
|
||||
let max_shift = 0.5 + radius;
|
||||
let s_center = s_cell + max_shift * noise_2d(s_cell + 1.5, t_cell + 2.8);
|
||||
let t_center = t_cell + max_shift * noise_2d(s_cell + 4.5, t_cell + 9.8);
|
||||
let dst = st - Point2f::new(s_center, t_center);
|
||||
if dst.norm_squared() < square(radius) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct FloatDotsTexture {
|
||||
pub mapping: TextureMapping2D,
|
||||
pub outside_dot: RelPtr<GPUFloatTexture>,
|
||||
pub inside_dot: RelPtr<GPUFloatTexture>,
|
||||
}
|
||||
|
||||
impl FloatDotsTexture {
|
||||
pub fn evaluate(&self, _ctx: &TextureEvalContext) -> Float {
|
||||
todo!()
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
let c = self.mapping.map(ctx);
|
||||
if inside_polka_dot(c.st) {
|
||||
if let Some(tex) = self.inside_dot.get() {
|
||||
tex.evaluate(ctx)
|
||||
}
|
||||
} else {
|
||||
if let Some(tex) = self.outside_dot.get() {
|
||||
tex.evaluate(ctx)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SpectrumDotsTexture;
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct SpectrumDotsTexture {
|
||||
pub mapping: TextureMapping2D,
|
||||
pub outside_dot: RelPtr<GPUSpectrumTexture>,
|
||||
pub inside_dot: RelPtr<GPUSpectrumTexture>,
|
||||
}
|
||||
|
||||
impl SpectrumDotsTexture {
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
_ctx: &TextureEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
ctx: &TextureEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
todo!()
|
||||
let c = self.mapping.map(ctx);
|
||||
if inside_polka_dot(c.st) {
|
||||
if let Some(tex) = self.inside_dot.get() {
|
||||
tex.evaluate(ctx, &lambda)
|
||||
}
|
||||
} else {
|
||||
if let Some(tex) = self.outside_dot.get() {
|
||||
tex.evaluate(ctx, &lambda)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,10 +1,12 @@
|
|||
use crate::Float;
|
||||
use crate::core::texture::{TextureEvalContext, TextureMapping3D};
|
||||
use crate::utils::noise::fbm;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct FBmTexture {
|
||||
pub mapping: TextureMapping3D,
|
||||
pub omega: Float,
|
||||
pub octaves: usize,
|
||||
pub octaves: u32,
|
||||
}
|
||||
|
||||
impl FBmTexture {
|
||||
|
|
|
|||
|
|
@ -1,12 +1,17 @@
|
|||
use crate::Float;
|
||||
use crate::core::color::{RGB, XYZ};
|
||||
use crate::core::spectrum::SpectrumTrait;
|
||||
use crate::core::texture::{SpectrumType, TextureEvalContext, TextureMapping2D};
|
||||
use crate::spectra::RGBColorSpace;
|
||||
use crate::spectra::{
|
||||
RGBAlbedoSpectrum, RGBColorSpace, RGBIlluminantSpectrum, RGBUnboundedSpectrum, SampledSpectrum,
|
||||
SampledWavelengths,
|
||||
};
|
||||
|
||||
/* GPU heavy code, dont know if this will ever work the way Im doing things.
|
||||
* Leaving it here isolated, for careful handling */
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct GPUSpectrumImageTexture {
|
||||
pub mapping: TextureMapping2D,
|
||||
pub tex_obj: u64,
|
||||
|
|
@ -32,8 +37,8 @@ impl GPUSpectrumImageTexture {
|
|||
{
|
||||
use cuda_std::intrinsics;
|
||||
let c = self.mapping.map(ctx);
|
||||
let u = c.st.x;
|
||||
let v = 1.0 - c.st.y;
|
||||
let u = c.st.x();
|
||||
let v = 1.0 - c.st.y();
|
||||
|
||||
let d_p_dx = [c.dsdx, c.dtdx];
|
||||
let d_p_dy = [c.dsdy, c.dtdy];
|
||||
|
|
@ -53,22 +58,20 @@ impl GPUSpectrumImageTexture {
|
|||
rgb = (RGB::new(1.0, 1.0, 1.0) - rgb).clamp_zero();
|
||||
}
|
||||
|
||||
let color_space = unsafe { &*self.color_space };
|
||||
|
||||
match self.spectrum_type {
|
||||
SpectrumType::Unbounded => {
|
||||
RGBUnboundedSpectrum::new(color_space, rgb).sample(lambda)
|
||||
RGBUnboundedSpectrum::new(&self.color_space, rgb).sample(lambda)
|
||||
}
|
||||
SpectrumType::Albedo => {
|
||||
RGBAlbedoSpectrum::new(color_space, rgb.clamp(0.0, 1.0)).sample(lambda)
|
||||
RGBAlbedoSpectrum::new(&self.color_space, rgb.clamp(0.0, 1.0)).sample(lambda)
|
||||
}
|
||||
_ => RGBIlluminantSpectrum::new(color_space, rgb).sample(lambda),
|
||||
_ => RGBIlluminantSpectrum::new(&self.color_space, rgb).sample(lambda),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct GPUFloatImageTexture {
|
||||
pub mapping: TextureMapping2D,
|
||||
pub tex_obj: u64,
|
||||
|
|
@ -86,13 +89,13 @@ impl GPUFloatImageTexture {
|
|||
{
|
||||
use cuda_std::intrinsics;
|
||||
let c = self.mapping.map(ctx);
|
||||
let u = c.st.x;
|
||||
let v = 1.0 - c.st.y;
|
||||
let u = c.st.x();
|
||||
let v = 1.0 - c.st.y();
|
||||
let d_p_dx = [c.dsdx, c.dtdx];
|
||||
let d_p_dy = [c.dsdy, c.dtdy];
|
||||
let val: Float = unsafe { intrinsics::tex2d_grad(self.tex_obj, u, v, d_p_dx, d_p_dy) };
|
||||
|
||||
if invert {
|
||||
if self.invert {
|
||||
return (1. - v).max(0.);
|
||||
} else {
|
||||
return v;
|
||||
|
|
|
|||
|
|
@ -1,27 +1,40 @@
|
|||
use crate::Float;
|
||||
use crate::core::color::RGB;
|
||||
use crate::core::geometry::{Point3f, Vector3f};
|
||||
use crate::core::spectrum::SpectrumTrait;
|
||||
use crate::core::texture::{TextureEvalContext, TextureMapping3D};
|
||||
use crate::spectra::{RGBAlbedoSpectrum, SampledSpectrum, SampledWavelengths};
|
||||
use crate::spectra::{RGBAlbedoSpectrum, RGBColorSpace, SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::math::clamp;
|
||||
use crate::utils::noise::fbm;
|
||||
use crate::utils::splines::evaluate_cubic_bezier;
|
||||
use crate::Float;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug, Copy)]
|
||||
pub struct MarbleTexture {
|
||||
pub mapping: TextureMapping3D,
|
||||
pub octaves: usize,
|
||||
pub octaves: u32,
|
||||
pub omega: Float,
|
||||
pub scale: Float,
|
||||
pub variation: Float,
|
||||
// TODO: DO not forget to pass StandardColorSpace here!!
|
||||
pub colorspace: *const RGBColorSpace,
|
||||
}
|
||||
|
||||
unsafe impl Send for MarbleTexture {}
|
||||
unsafe impl Sync for MarbleTexture {}
|
||||
|
||||
impl MarbleTexture {
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
ctx: &TextureEvalContext,
|
||||
_lambda: &SampledWavelengths,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
let mut c = self.mapping.map(ctx);
|
||||
c.p *= self.scale;
|
||||
let marble = c.p.y() + self.variation * fbm(c.p, self.scale, c.dpdy, omega, self.octaves);
|
||||
const COLORS: [RGB; 9] = [
|
||||
c.p = Point3f::from(Vector3f::from(c.p) * self.scale);
|
||||
let marble =
|
||||
c.p.y() + self.variation * fbm(c.p, self.scale, c.dpdy, self.omega, self.octaves);
|
||||
let t = 0.5 + 0.5 * marble.sin();
|
||||
let colors: [RGB; 9] = [
|
||||
RGB::new(0.58, 0.58, 0.6),
|
||||
RGB::new(0.58, 0.58, 0.6),
|
||||
RGB::new(0.58, 0.58, 0.6),
|
||||
|
|
@ -34,23 +47,13 @@ impl MarbleTexture {
|
|||
];
|
||||
|
||||
const N_SEG: i32 = 6; // (9 - 3)
|
||||
let t_clamped = t.clamp(0.0, 1.0);
|
||||
let t_clamped = clamp(t, 0.0, 1.0);
|
||||
let first = ((t_clamped * N_SEG as Float).floor() as i32).clamp(0, N_SEG - 1);
|
||||
let t_segment = t_clamped * N_SEG as Float - first as Float;
|
||||
let first_idx = first as usize;
|
||||
let rgb = evaluate_cubic_bezier(&COLORS[first_idx..first_idx + 4], t_segment) * 1.5;
|
||||
let rgb = evaluate_cubic_bezier(&colors[first_idx..first_idx + 4], t_segment) * 1.5;
|
||||
|
||||
let color_space = {
|
||||
#[cfg(target_os = "cuda")]
|
||||
{
|
||||
unsafe { &*RGBColorSpace_sRGB }
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
{
|
||||
RGBColorSpace::srgb()
|
||||
}
|
||||
};
|
||||
let color_space = unsafe { &*self.colorspace };
|
||||
RGBAlbedoSpectrum::new(color_space, rgb).sample(lambda)
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,33 +1,133 @@
|
|||
use crate::core::geometry::Vector3f;
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture};
|
||||
use crate::utils::Ptr;
|
||||
use crate::Float;
|
||||
use crate::core::geometry::{Vector3f, VectorLike};
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvalContext};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct GPUFloatMixTexture {
|
||||
pub tex1: Ptr<GPUFloatTexture>,
|
||||
pub tex2: Ptr<GPUFloatTexture>,
|
||||
pub tex1: RelPtr<GPUFloatTexture>,
|
||||
pub tex2: RelPtr<GPUFloatTexture>,
|
||||
pub amount: RelPtr<GPUFloatTexture>,
|
||||
}
|
||||
|
||||
impl GPUFloatMixTexture {
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
let amt = self.amount.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.0);
|
||||
let t1 = if amt != 1.0 {
|
||||
self.tex1.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.0)
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
|
||||
let t2 = if amt != 0.0 {
|
||||
self.tex2.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.0)
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
|
||||
(1.0 - amt) * t1 + amt * t2
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct GPUFloatDirectionMixTexture {
|
||||
pub tex1: Ptr<GPUFloatTexture>,
|
||||
pub tex2: Ptr<GPUFloatTexture>,
|
||||
pub tex1: RelPtr<GPUFloatTexture>,
|
||||
pub tex2: RelPtr<GPUFloatTexture>,
|
||||
pub dir: Vector3f,
|
||||
}
|
||||
|
||||
impl GPUFloatDirectionMixTexture {
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
let amt = self.dir.abs_dot(ctx.n.into());
|
||||
let t1 = if amt != 1.0 {
|
||||
self.tex1.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.0)
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
|
||||
let t2 = if amt != 0.0 {
|
||||
self.tex2.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.0)
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
|
||||
(1.0 - amt) * t1 + amt * t2
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct GPUSpectrumMixTexture {
|
||||
pub tex1: Ptr<GPUSpectrumTexture>,
|
||||
pub tex2: Ptr<GPUSpectrumTexture>,
|
||||
pub tex1: RelPtr<GPUSpectrumTexture>,
|
||||
pub tex2: RelPtr<GPUSpectrumTexture>,
|
||||
pub amount: RelPtr<GPUFloatTexture>,
|
||||
}
|
||||
|
||||
impl GPUSpectrumMixTexture {
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
ctx: &TextureEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
let amt = self.amount.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.0);
|
||||
let t1 = if amt != 1.0 {
|
||||
self.tex1
|
||||
.get()
|
||||
.map(|t| t.evaluate(&ctx, &lambda))
|
||||
.unwrap_or(SampledSpectrum::new(0.))
|
||||
} else {
|
||||
SampledSpectrum::new(0.)
|
||||
};
|
||||
|
||||
let t2 = if amt != 0.0 {
|
||||
self.tex2
|
||||
.get()
|
||||
.map(|t| t.evaluate(&ctx, &lambda))
|
||||
.unwrap_or(SampledSpectrum::new(0.))
|
||||
} else {
|
||||
SampledSpectrum::new(0.)
|
||||
};
|
||||
|
||||
(1.0 - amt) * t1 + amt * t2
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct GPUSpectrumDirectionMixTexture {
|
||||
pub tex1: Ptr<GPUSpectrumTexture>,
|
||||
pub tex2: Ptr<GPUSpectrumTexture>,
|
||||
pub tex1: RelPtr<GPUSpectrumTexture>,
|
||||
pub tex2: RelPtr<GPUSpectrumTexture>,
|
||||
pub dir: Vector3f,
|
||||
}
|
||||
|
||||
impl GPUSpectrumDirectionMixTexture {
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
ctx: &TextureEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
let amt = self.dir.abs_dot(ctx.n.into());
|
||||
let t1 = if amt != 1.0 {
|
||||
self.tex1
|
||||
.get()
|
||||
.map(|t| t.evaluate(&ctx, &lambda))
|
||||
.unwrap_or(SampledSpectrum::new(0.))
|
||||
} else {
|
||||
SampledSpectrum::new(0.)
|
||||
};
|
||||
|
||||
let t2 = if amt != 0.0 {
|
||||
self.tex2
|
||||
.get()
|
||||
.map(|t| t.evaluate(&ctx, &lambda))
|
||||
.unwrap_or(SampledSpectrum::new(0.))
|
||||
} else {
|
||||
SampledSpectrum::new(0.)
|
||||
};
|
||||
|
||||
(1.0 - amt) * t1 + amt * t2
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,29 +1,32 @@
|
|||
use crate::Float;
|
||||
use crate::core::color::RGB;
|
||||
use crate::core::spectrum::{SpectrumTrait, StandardSpectra};
|
||||
use crate::core::texture::{SpectrumType, TextureEvalContext};
|
||||
use crate::spectra::{
|
||||
RGBAlbedoSpectrum, RGBColorSpace, RGBIlluminantSpectrum, RGBUnboundedSpectrum, SampledSpectrum,
|
||||
SampledWavelengths,
|
||||
SampledWavelengths, StandardColorSpaces,
|
||||
};
|
||||
use crate::utils::ptr::{Ptr, Slice};
|
||||
|
||||
/* GPU heavy code, have to see how to best approach this
|
||||
*/
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GPUFloatPtexTexture {
|
||||
pub face_values: Vec<Float>,
|
||||
pub face_values: *const Float,
|
||||
}
|
||||
|
||||
impl GPUFloatPtexTexture {
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
self.face_values[ctx.face_index]
|
||||
unsafe { *self.face_values.add(ctx.face_index as usize) }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct GPUSpectrumPtexTexture {
|
||||
pub face_values: *const RGB,
|
||||
pub n_faces: usize,
|
||||
pub face_values: Slice<RGB>,
|
||||
pub n_faces: u32,
|
||||
pub spectrum_type: SpectrumType,
|
||||
pub colorspaces: StandardColorSpaces,
|
||||
}
|
||||
|
||||
impl GPUSpectrumPtexTexture {
|
||||
|
|
@ -32,24 +35,19 @@ impl GPUSpectrumPtexTexture {
|
|||
ctx: &TextureEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
let index = ctx.face_index.clamp(0, self.n_faces.saturating_sub(1));
|
||||
let rgb = unsafe { *self.face_values.add(index) };
|
||||
let s_rgb = {
|
||||
#[cfg(feature = "cuda")]
|
||||
unsafe {
|
||||
&*RGBColorSpace_sRGB
|
||||
}
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
RGBColorSpace::srgb()
|
||||
};
|
||||
let index = ctx
|
||||
.face_index
|
||||
.clamp(0, self.n_faces.saturating_sub(1) as usize);
|
||||
let rgb = self.face_values[index];
|
||||
let s_rgb = self.colorspaces.srgb;
|
||||
|
||||
match self.spectrum_type {
|
||||
SpectrumType::Unbounded => RGBUnboundedSpectrum::new(s_rgb, rgb).sample(lambda),
|
||||
SpectrumType::Unbounded => RGBUnboundedSpectrum::new(&s_rgb, rgb).sample(lambda),
|
||||
SpectrumType::Albedo => {
|
||||
let clamped_rgb = rgb.clamp(0.0, 1.0);
|
||||
RGBAlbedoSpectrum::new(s_rgb, clamped_rgb).sample(lambda)
|
||||
RGBAlbedoSpectrum::new(&s_rgb, clamped_rgb).sample(lambda)
|
||||
}
|
||||
SpectrumType::Illuminant => RGBIlluminantSpectrum::new(s_rgb, rgb).sample(lambda),
|
||||
SpectrumType::Illuminant => RGBIlluminantSpectrum::new(&s_rgb, rgb).sample(lambda),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,16 +1,44 @@
|
|||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture};
|
||||
use crate::utils::Ptr;
|
||||
use crate::Float;
|
||||
use crate::core::texture::{GPUFloatTexture, GPUSpectrumTexture, TextureEvalContext};
|
||||
use crate::spectra::{SampledSpectrum, SampledWavelengths};
|
||||
use crate::utils::RelPtr;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GPUFloatScaledTexture {
|
||||
tex: Ptr<GPUFloatTexture>,
|
||||
scale: Ptr<GPUFloatTexture>,
|
||||
pub tex: RelPtr<GPUFloatTexture>,
|
||||
pub scale: RelPtr<GPUFloatTexture>,
|
||||
}
|
||||
|
||||
impl GPUFloatScaledTexture {
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
let sc = self.scale.get().map(|t| t.evaluate(&ctx)).unwrap();
|
||||
if sc == 0. {
|
||||
return 0.;
|
||||
}
|
||||
self.tex.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.0) * sc
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GPUSpectrumScaledTexture {
|
||||
tex: Ptr<GPUSpectrumTexture>,
|
||||
scale: Ptr<GPUFloatTexture>,
|
||||
pub tex: RelPtr<GPUSpectrumTexture>,
|
||||
pub scale: RelPtr<GPUFloatTexture>,
|
||||
}
|
||||
|
||||
impl GPUSpectrumScaledTexture {
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
ctx: &TextureEvalContext,
|
||||
lambda: &SampledWavelengths,
|
||||
) -> SampledSpectrum {
|
||||
let sc = self.scale.get().map(|t| t.evaluate(&ctx)).unwrap_or(0.);
|
||||
|
||||
self.tex
|
||||
.get()
|
||||
.map(|t| t.evaluate(&ctx, &lambda))
|
||||
.unwrap_or(SampledSpectrum::new(0.))
|
||||
* sc
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,7 +1,10 @@
|
|||
use crate::Float;
|
||||
use crate::core::geometry::{Point3f, Vector3f};
|
||||
use crate::core::texture::{TextureEvalContext, TextureMapping3D};
|
||||
use crate::utils::noise::fbm;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct WindyTexture {
|
||||
pub mapping: TextureMapping3D,
|
||||
}
|
||||
|
|
@ -9,7 +12,13 @@ pub struct WindyTexture {
|
|||
impl WindyTexture {
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
let c = self.mapping.map(ctx);
|
||||
let wind_strength = fbm(0.1 * c.p, 0.1 * c.dpdx, 0.1 * c.dpdy, 0.5, 3);
|
||||
let wind_strength = fbm(
|
||||
Point3f::from(0.1 * Vector3f::from(c.p)),
|
||||
0.1 * c.dpdx,
|
||||
0.1 * c.dpdy,
|
||||
0.5,
|
||||
3,
|
||||
);
|
||||
let wave_height = fbm(c.p, c.dpdx, c.dpdy, 0.5, 6);
|
||||
wind_strength.abs() * wave_height
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,16 +1,18 @@
|
|||
use crate::Float;
|
||||
use crate::core::texture::{TextureEvalContext, TextureMapping3D};
|
||||
use crate::utils::noise::turbulence;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct WrinkledTexture {
|
||||
pub mapping: TextureMapping3D,
|
||||
pub octaves: usize,
|
||||
pub octaves: u32,
|
||||
pub omega: Float,
|
||||
}
|
||||
|
||||
impl WrinkledTexture {
|
||||
pub fn evaluate(&self, ctx: &TextureEvalContext) -> Float {
|
||||
let c = self.mapping.map(ctx);
|
||||
turbulence(c.p, c.dpdx, c.dpdy, omega, octaves)
|
||||
turbulence(c.p, c.dpdx, c.dpdy, self.omega, self.octaves)
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -10,53 +10,65 @@ use crate::core::geometry::{
|
|||
Bounds2i, Bounds3f, Bounds3i, Point2i, Point3f, Point3i, Vector2i, Vector3f, Vector3i,
|
||||
};
|
||||
|
||||
// pub trait Interpolatable:
|
||||
// Copy + Default + Add<Output = Self> + Sub<Output = Self> + Mul<Float, Output = Self>
|
||||
// {
|
||||
// }
|
||||
//
|
||||
// impl<T> Interpolatable for T where
|
||||
// T: Copy + Default + Add<Output = T> + Sub<Output = T> + Mul<Float, Output = T>
|
||||
// {
|
||||
// }
|
||||
pub trait Interpolatable:
|
||||
Copy + Default + Add<Output = Self> + Sub<Output = Self> + Mul<Float, Output = Self>
|
||||
{
|
||||
}
|
||||
|
||||
impl<T> Interpolatable for T where
|
||||
T: Copy + Default + Add<Output = T> + Sub<Output = T> + Mul<Float, Output = T>
|
||||
{
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Array2D<T> {
|
||||
pub values: *mut T,
|
||||
pub extent: Bounds2i,
|
||||
pub x_stride: i32,
|
||||
}
|
||||
|
||||
unsafe impl<T: Send> Send for Array2D<T> {}
|
||||
unsafe impl<T: Sync> Sync for Array2D<T> {}
|
||||
|
||||
impl<T> Array2D<T> {
|
||||
#[inline]
|
||||
pub fn x_size(&self) -> usize {
|
||||
(self.extent.p_max.x() - self.extent.p_min.x()) as usize
|
||||
pub fn x_size(&self) -> u32 {
|
||||
(self.extent.p_max.x() - self.extent.p_min.x()) as u32
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn y_size(&self) -> usize {
|
||||
(self.extent.p_max.y() - self.extent.p_min.y()) as usize
|
||||
pub fn y_size(&self) -> u32 {
|
||||
(self.extent.p_max.y() - self.extent.p_min.y()) as u32
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn size(&self) -> usize {
|
||||
self.extent.area() as usize
|
||||
pub fn size(&self) -> u32 {
|
||||
self.extent.area() as u32
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn offset(&self, p: Point2i) -> isize {
|
||||
let ox = p.x() - self.extent.p_min.x();
|
||||
let oy = p.y() - self.extent.p_min.y();
|
||||
(ox + oy * self.x_stride) as isize
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn index(&self, x: i32, y: i32) -> usize {
|
||||
let nx = x - self.extent.p_min.x;
|
||||
let ny = y - self.extent.p_min.y;
|
||||
(nx + self.x_size() * ny) as usize
|
||||
pub fn index(&self, x: i32, y: i32) -> u32 {
|
||||
let nx = x - self.extent.p_min.x();
|
||||
let ny = y - self.extent.p_min.y();
|
||||
nx as u32 + self.x_size() * ny as u32
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub unsafe fn get(&self, x: i32, y: i32) -> &T {
|
||||
unsafe { &*self.values.add(self.index(x, y)) }
|
||||
#[inline(always)]
|
||||
pub fn get(&self, p: Point2i) -> &T {
|
||||
unsafe { &*self.values.offset(self.offset(p)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub unsafe fn get_mut(&mut self, x: i32, y: i32) -> &mut T {
|
||||
unsafe { &mut *self.values.add(self.index(x, y)) }
|
||||
#[inline(always)]
|
||||
pub fn get_mut(&mut self, p: Point2i) -> &mut T {
|
||||
unsafe { &mut *self.values.offset(self.offset(p)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
|
@ -66,121 +78,50 @@ impl<T> Array2D<T> {
|
|||
|
||||
#[inline]
|
||||
pub fn get_linear_mut(&mut self, index: usize) -> &mut T {
|
||||
// SAFETY: Caller must ensure index < size()
|
||||
unsafe { &mut *self.values.add(index) }
|
||||
}
|
||||
|
||||
pub fn as_slice(&self) -> &[T] {
|
||||
unsafe { core::slice::from_raw_parts(self.values, self.size()) }
|
||||
unsafe { core::slice::from_raw_parts(self.values, self.size() as usize) }
|
||||
}
|
||||
|
||||
pub fn as_mut_slice(&mut self) -> &mut [T] {
|
||||
unsafe { core::slice::from_raw_parts_mut(self.values, self.size()) }
|
||||
unsafe { core::slice::from_raw_parts_mut(self.values, self.size() as usize) }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl<T: Clone> Clone for Array2D<T> {
|
||||
fn clone(&self) -> Self {
|
||||
let n = self.area();
|
||||
let mut v = Vec::with_capacity(n);
|
||||
unsafe {
|
||||
for i in 0..n {
|
||||
v.push((*self.values.add(i)).clone());
|
||||
}
|
||||
}
|
||||
let values = v.as_mut_ptr();
|
||||
std::mem::forget(v);
|
||||
Self {
|
||||
extent: self.extent,
|
||||
values,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(target_os = "cuda")]
|
||||
impl<T> Clone for Array2D<T> {
|
||||
fn clone(&self) -> Self {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(target_os = "cuda")]
|
||||
impl<T> Copy for Array2D<T> {}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl<T: Default + Clone> Array2D<T> {
|
||||
pub fn new(extent: Bounds2i) -> Self {
|
||||
let n = extent.area() as usize;
|
||||
let mut v = vec![T::default(); n];
|
||||
let values = v.as_mut_ptr();
|
||||
std::mem::forget(v);
|
||||
Self { extent, values }
|
||||
}
|
||||
|
||||
pub fn new_with_dims(nx: usize, ny: usize) -> Self {
|
||||
let extent = Bounds2i::new(Point2i::new(0, 0), Point2i::new(nx, ny));
|
||||
let n = extent.area() as usize;
|
||||
|
||||
let mut v = vec![T::default(); n];
|
||||
let values = v.as_mut_ptr();
|
||||
|
||||
std::mem::forget(v);
|
||||
|
||||
Self { extent, values }
|
||||
}
|
||||
|
||||
pub fn new_from_bounds(extent: Bounds2i, default_val: T) -> Self {
|
||||
let n = extent.area() as usize;
|
||||
let mut v = vec![def; n];
|
||||
let values = v.as_mut_ptr();
|
||||
std::mem::forget(v);
|
||||
Self { extent, values }
|
||||
}
|
||||
|
||||
pub fn new_filled(width: usize, height: usize, value: T) -> Self {
|
||||
let extent = Bounds2i::from_points(
|
||||
Point2i::new(0, 0),
|
||||
Point2i::new(width as i32, height as i32),
|
||||
);
|
||||
Self::new_from_bounds(extent, value)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
impl<T> Index<Point2i> for Array2D<T> {
|
||||
type Output = T;
|
||||
|
||||
fn index(&self, mut p: Point2i) -> &Self::Output {
|
||||
unsafe { self.get(pos.0, pos.1) }
|
||||
#[inline(always)]
|
||||
fn index(&self, p: Point2i) -> &Self::Output {
|
||||
self.get(p)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
impl<T> IndexMut<Point2i> for Array2D<T> {
|
||||
fn index_mut(&mut self, mut p: Point2i) -> &mut Self::Output {
|
||||
unsafe { self.get_mut(pos.0, pos.1) }
|
||||
fn index_mut(&mut self, p: Point2i) -> &mut Self::Output {
|
||||
self.get_mut(p)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
impl<T> Index<(i32, i32)> for Array2D<T> {
|
||||
type Output = T;
|
||||
fn index(&self, pos: (i32, i32)) -> &Self::Output {
|
||||
unsafe { self.get(pos.0, pos.1) }
|
||||
fn index(&self, (x, y): (i32, i32)) -> &Self::Output {
|
||||
&self[Point2i::new(x, y)]
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
impl<T> IndexMut<(i32, i32)> for Array2D<T> {
|
||||
fn index_mut(&mut self, pos: (i32, i32)) -> &mut Self::Output {
|
||||
unsafe { self.get_mut(pos.0, pos.1) }
|
||||
fn index_mut(&mut self, (x, y): (i32, i32)) -> &mut Self::Output {
|
||||
&mut self[Point2i::new(x, y)]
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct SampledGrid<T> {
|
||||
pub values: *const T,
|
||||
pub values_len: u32,
|
||||
pub nx: i32,
|
||||
pub ny: i32,
|
||||
pub nz: i32,
|
||||
|
|
@ -195,6 +136,7 @@ impl<T> SampledGrid<T> {
|
|||
assert_eq!(slice.len(), (nx * ny * nz) as usize);
|
||||
Self {
|
||||
values: slice.as_ptr(),
|
||||
values_len: (nx * ny * nz) as u32,
|
||||
nx,
|
||||
ny,
|
||||
nz,
|
||||
|
|
@ -204,6 +146,7 @@ impl<T> SampledGrid<T> {
|
|||
pub fn empty() -> Self {
|
||||
Self {
|
||||
values: core::ptr::null(),
|
||||
values_len: 0,
|
||||
nx: 0,
|
||||
ny: 0,
|
||||
nz: 0,
|
||||
|
|
@ -214,8 +157,8 @@ impl<T> SampledGrid<T> {
|
|||
!self.values.is_null() && self.nx > 0 && self.ny > 0 && self.nz > 0
|
||||
}
|
||||
|
||||
pub fn bytes_allocated(&self) -> usize {
|
||||
self.values.len() * std::mem::size_of::<T>()
|
||||
pub fn bytes_allocated(&self) -> u32 {
|
||||
self.values_len * std::mem::size_of::<T>() as u32
|
||||
}
|
||||
|
||||
pub fn x_size(&self) -> i32 {
|
||||
|
|
@ -239,7 +182,7 @@ impl<T> SampledGrid<T> {
|
|||
return U::default();
|
||||
}
|
||||
|
||||
let sample_bounds = Bounds3i::new(
|
||||
let sample_bounds = Bounds3i::from_points(
|
||||
Point3i::new(0, 0, 0),
|
||||
Point3i::new(self.nx, self.ny, self.nz),
|
||||
);
|
||||
|
|
|
|||
|
|
@ -1,9 +1,5 @@
|
|||
use image_rs::{ImageError as IError, error};
|
||||
use std::fmt;
|
||||
use std::sync::Arc;
|
||||
use thiserror::Error;
|
||||
|
||||
use crate::images::PixelFormat;
|
||||
|
||||
#[derive(Error, Debug)]
|
||||
pub enum LlsError {
|
||||
|
|
|
|||
|
|
@ -1,10 +1,11 @@
|
|||
use super::error::{InversionError, LlsError};
|
||||
use crate::core::geometry::{Lerp, Point, Point2f, Point2i, Vector, Vector3f, VectorLike};
|
||||
use crate::core::color::{RGB, XYZ};
|
||||
use crate::core::geometry::{Lerp, MulAdd, Point, Point2f, Point2i, Vector, Vector3f, VectorLike};
|
||||
use crate::core::pbrt::{Float, FloatBitOps, FloatBits, ONE_MINUS_EPSILON, PI, PI_OVER_4};
|
||||
use crate::spectra::color::{RGB, XYZ};
|
||||
use crate::utils::hash::{hash_buffer, mix_bits};
|
||||
use crate::utils::sobol::{SOBOL_MATRICES_32, VDC_SOBOL_MATRICES, VDC_SOBOL_MATRICES_INV};
|
||||
|
||||
use half::f16;
|
||||
use num_traits::{Float as NumFloat, Num, One, Signed, Zero};
|
||||
use std::error::Error;
|
||||
use std::fmt::{self, Display};
|
||||
|
|
@ -72,15 +73,15 @@ pub fn evaluate_polynomial(t: Float, coeffs: &[Float]) -> Float {
|
|||
result
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn difference_of_products<T>(a: T, b: T, c: T, d: T) -> T
|
||||
pub fn difference_of_products<T>(a: Float, b: T, c: Float, d: T) -> T
|
||||
where
|
||||
T: Mul<Output = T> + Add<Output = T> + Neg<Output = T> + Copy,
|
||||
T: Copy + Neg<Output = T> + Mul<Float, Output = T> + Add<Output = T>,
|
||||
T: MulAdd<Float, T, Output = T>,
|
||||
{
|
||||
let cd = c * d;
|
||||
let difference_of_products = fma(a, b, -cd);
|
||||
let error = fma(-c, d, cd);
|
||||
difference_of_products + error
|
||||
let cd = d * c;
|
||||
let diff = b.mul_add(a, -cd);
|
||||
let error = d.mul_add(-c, cd);
|
||||
diff + error
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
|
@ -147,8 +148,7 @@ pub fn fast_exp(x: Float) -> Float {
|
|||
let fxp = xp.floor();
|
||||
let f = xp - fxp;
|
||||
let i = fxp as i32;
|
||||
let two_to_f = evaluate_polynomial(f, &[1., 0.695556856, 0.226173572, 0.0781455737])
|
||||
.expect("Could not evaluate polynomial");
|
||||
let two_to_f = evaluate_polynomial(f, &[1., 0.695556856, 0.226173572, 0.0781455737]);
|
||||
let exponent = exponent(two_to_f) + i;
|
||||
if exponent < -126 {
|
||||
return 0.;
|
||||
|
|
@ -713,8 +713,8 @@ const PRIMES: [i32; PRIME_TABLE_SIZE] = [
|
|||
];
|
||||
|
||||
#[inline]
|
||||
pub fn radical_inverse(base_index: usize, mut a: u64) -> Float {
|
||||
let base = PRIMES[base_index] as u64;
|
||||
pub fn radical_inverse(base_index: u32, mut a: u64) -> Float {
|
||||
let base = PRIMES[base_index as usize] as u64;
|
||||
|
||||
let limit = (u64::MAX / base).saturating_sub(base);
|
||||
|
||||
|
|
@ -748,16 +748,17 @@ pub fn inverse_radical_inverse(mut inverse: u64, base: u64, n_digits: u64) -> u6
|
|||
}
|
||||
|
||||
// Digit scrambling
|
||||
#[repr(C)]
|
||||
#[derive(Default, Debug, Clone)]
|
||||
pub struct DigitPermutation {
|
||||
base: usize,
|
||||
n_digits: usize,
|
||||
base: u32,
|
||||
n_digits: u32,
|
||||
permutations: Vec<u16>,
|
||||
}
|
||||
|
||||
impl DigitPermutation {
|
||||
pub fn new(base: usize, seed: u64) -> Self {
|
||||
let mut n_digits = 0;
|
||||
pub fn new(base: u32, seed: u64) -> Self {
|
||||
let mut n_digits: u32 = 0;
|
||||
let inv_base = 1. / base as Float;
|
||||
let mut inv_base_m = 1.;
|
||||
|
||||
|
|
@ -766,14 +767,14 @@ impl DigitPermutation {
|
|||
inv_base_m *= inv_base;
|
||||
}
|
||||
|
||||
let mut permutations = vec![0u16; n_digits * base];
|
||||
let mut permutations = vec![0u16; n_digits as usize * base as usize];
|
||||
|
||||
for digit_index in 0..n_digits {
|
||||
let hash_input = [base as u64, digit_index as u64, seed];
|
||||
let dseed = hash_buffer(&hash_input, 0);
|
||||
|
||||
for digit_value in 0..base {
|
||||
let index = digit_index * base + digit_value;
|
||||
let index = (digit_index * base + digit_value) as usize;
|
||||
|
||||
permutations[index] =
|
||||
permutation_element(digit_value as u32, base as u32, dseed as u32) as u16;
|
||||
|
|
@ -1032,7 +1033,7 @@ impl<F: Fn(u32) -> u32> Scrambler for F {
|
|||
const N_SOBOL_DIMENSIONS: usize = 1024;
|
||||
const SOBOL_MATRIX_SIZE: usize = 52;
|
||||
#[inline]
|
||||
pub fn sobol_sample<S: Scrambler>(mut a: u64, dimension: usize, randomizer: S) -> Float {
|
||||
pub fn sobol_sample<S: Scrambler>(mut a: u64, dimension: u32, randomizer: S) -> Float {
|
||||
debug_assert!(
|
||||
dimension < N_SOBOL_DIMENSIONS,
|
||||
"Sobol dimension out of bounds"
|
||||
|
|
@ -1571,3 +1572,53 @@ mod tests {
|
|||
assert_eq!(m.determinant(), 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn f16_to_f32(bits: u16) -> f32 {
|
||||
#[cfg(target_os = "cuda")]
|
||||
{
|
||||
// Use hardware intrinsic on CUDA
|
||||
// Cast bits to cuda_std::f16, then cast to f32
|
||||
let half_val = unsafe { core::mem::transmute::<u16, cuda_std::f16>(bits) };
|
||||
half_val.to_f32()
|
||||
}
|
||||
|
||||
#[cfg(target_arch = "spirv")]
|
||||
{
|
||||
// Use shared logic or spirv-std intrinsics if available.
|
||||
// Sadly, f16 support in rust-gpu is still maturing.
|
||||
// A manual bit-conversion function is often safest here.
|
||||
f16_to_f32_software(bits)
|
||||
}
|
||||
|
||||
#[cfg(not(any(target_os = "cuda", target_arch = "spirv")))]
|
||||
{
|
||||
f16::from_bits(bits).to_f32()
|
||||
}
|
||||
}
|
||||
|
||||
fn f16_to_f32_software(h: u16) -> f32 {
|
||||
let sign = ((h >> 15) & 1) as u32;
|
||||
let exp = ((h >> 10) & 0x1F) as u32;
|
||||
let mant = (h & 0x3FF) as u32;
|
||||
|
||||
let out_bits = if exp == 0 {
|
||||
if mant == 0 {
|
||||
sign << 31
|
||||
} else {
|
||||
let mut m = mant;
|
||||
let mut e = 0;
|
||||
while (m & 0x400) == 0 {
|
||||
m <<= 1;
|
||||
e += 1;
|
||||
}
|
||||
(sign << 31) | ((112 - e) << 23) | ((m & 0x3FF) << 13)
|
||||
}
|
||||
} else if exp == 0x1F {
|
||||
(sign << 31) | (0xFF << 23) | (mant << 13)
|
||||
} else {
|
||||
(sign << 31) | ((exp + 112) << 23) | (mant << 13)
|
||||
};
|
||||
|
||||
f32::from_bits(out_bits)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,162 +1,34 @@
|
|||
use crate::Float;
|
||||
use crate::core::geometry::{Normal3f, Point2f, Point3f, Vector3f};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::utils::Transform;
|
||||
use crate::utils::ptr::Ptr;
|
||||
use crate::utils::sampling::PiecewiseConstant2D;
|
||||
use crate::utils::transform::TransformGeneric;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct TriangleMesh {
|
||||
pub n_triangles: usize,
|
||||
pub n_vertices: usize,
|
||||
pub vertex_indices: Arc<Vec<usize>>,
|
||||
pub p: Arc<Vec<Point3f>>,
|
||||
pub n: Option<Arc<Vec<Normal3f>>>,
|
||||
pub s: Option<Arc<Vec<Vector3f>>>,
|
||||
pub uv: Option<Arc<Vec<Point2f>>>,
|
||||
pub face_indices: Option<Arc<Vec<usize>>>,
|
||||
pub n_triangles: u32,
|
||||
pub n_vertices: u32,
|
||||
pub vertex_indices: Ptr<u32>,
|
||||
pub p: Ptr<Point3f>,
|
||||
pub n: Ptr<Normal3f>,
|
||||
pub s: Ptr<Vector3f>,
|
||||
pub uv: Ptr<Point2f>,
|
||||
pub face_indices: Ptr<u32>,
|
||||
pub reverse_orientation: bool,
|
||||
pub transform_swaps_handedness: bool,
|
||||
}
|
||||
|
||||
impl TriangleMesh {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
render_from_object: &TransformGeneric<Float>,
|
||||
reverse_orientation: bool,
|
||||
indices: Vec<usize>,
|
||||
mut p: Vec<Point3f>,
|
||||
mut s: Vec<Vector3f>,
|
||||
mut n: Vec<Normal3f>,
|
||||
uv: Vec<Point2f>,
|
||||
face_indices: Vec<usize>,
|
||||
) -> Self {
|
||||
let n_triangles = indices.len() / 3;
|
||||
let n_vertices = p.len();
|
||||
for pt in p.iter_mut() {
|
||||
*pt = render_from_object.apply_to_point(*pt);
|
||||
}
|
||||
|
||||
let transform_swaps_handedness = render_from_object.swaps_handedness();
|
||||
|
||||
let uv = if !uv.is_empty() {
|
||||
assert_eq!(n_vertices, uv.len());
|
||||
Some(uv)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let n = if !n.is_empty() {
|
||||
assert_eq!(n_vertices, n.len());
|
||||
for nn in n.iter_mut() {
|
||||
*nn = render_from_object.apply_to_normal(*nn);
|
||||
if reverse_orientation {
|
||||
*nn = -*nn;
|
||||
}
|
||||
}
|
||||
Some(n)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let s = if !s.is_empty() {
|
||||
assert_eq!(n_vertices, s.len());
|
||||
for ss in s.iter_mut() {
|
||||
*ss = render_from_object.apply_to_vector(*ss);
|
||||
}
|
||||
Some(s)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let face_indices = if !face_indices.is_empty() {
|
||||
assert_eq!(n_triangles, face_indices.len());
|
||||
Some(face_indices)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
assert!(p.len() <= i32::MAX as usize);
|
||||
assert!(indices.len() <= i32::MAX as usize);
|
||||
|
||||
Self {
|
||||
n_triangles,
|
||||
n_vertices,
|
||||
vertex_indices: Arc::new(indices),
|
||||
p: Arc::new(p),
|
||||
n: n.map(Arc::new),
|
||||
s: s.map(Arc::new),
|
||||
uv: uv.map(Arc::new),
|
||||
face_indices: face_indices.map(Arc::new),
|
||||
reverse_orientation,
|
||||
transform_swaps_handedness,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct BilinearPatchMesh {
|
||||
pub reverse_orientation: bool,
|
||||
pub transform_swaps_handedness: bool,
|
||||
pub n_patches: usize,
|
||||
pub n_vertices: usize,
|
||||
pub vertex_indices: Arc<Vec<usize>>,
|
||||
pub p: Arc<Vec<Point3f>>,
|
||||
pub n: Option<Arc<Vec<Normal3f>>>,
|
||||
pub uv: Option<Arc<Vec<Point2f>>>,
|
||||
pub image_distribution: Option<PiecewiseConstant2D>,
|
||||
}
|
||||
|
||||
impl BilinearPatchMesh {
|
||||
pub fn new(
|
||||
render_from_object: &TransformGeneric<Float>,
|
||||
reverse_orientation: bool,
|
||||
indices: Vec<usize>,
|
||||
mut p: Vec<Point3f>,
|
||||
mut n: Vec<Normal3f>,
|
||||
uv: Vec<Point2f>,
|
||||
image_distribution: PiecewiseConstant2D,
|
||||
) -> Self {
|
||||
let n_patches = indices.len() / 3;
|
||||
let n_vertices = p.len();
|
||||
for pt in p.iter_mut() {
|
||||
*pt = render_from_object.apply_to_point(*pt);
|
||||
}
|
||||
|
||||
let transform_swaps_handedness = render_from_object.swaps_handedness();
|
||||
|
||||
let uv = if !uv.is_empty() {
|
||||
assert_eq!(n_vertices, uv.len());
|
||||
Some(uv)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let n = if !n.is_empty() {
|
||||
assert_eq!(n_vertices, n.len());
|
||||
for nn in n.iter_mut() {
|
||||
*nn = render_from_object.apply_to_normal(*nn);
|
||||
if reverse_orientation {
|
||||
*nn = -*nn;
|
||||
}
|
||||
}
|
||||
Some(n)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
assert!(p.len() <= i32::MAX as usize);
|
||||
assert!(indices.len() <= i32::MAX as usize);
|
||||
|
||||
Self {
|
||||
n_patches,
|
||||
n_vertices,
|
||||
vertex_indices: Arc::new(indices),
|
||||
p: Arc::new(p),
|
||||
n: n.map(Arc::new),
|
||||
uv: uv.map(Arc::new),
|
||||
reverse_orientation,
|
||||
transform_swaps_handedness,
|
||||
image_distribution: Some(image_distribution),
|
||||
}
|
||||
}
|
||||
pub n_patches: u32,
|
||||
pub n_vertices: u32,
|
||||
pub vertex_indices: Ptr<u32>,
|
||||
pub p: Ptr<Point3f>,
|
||||
pub n: Ptr<Normal3f>,
|
||||
pub uv: Ptr<Point2f>,
|
||||
pub image_distribution: Ptr<PiecewiseConstant2D>,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
use std::sync::atomic::{AtomicU64, Ordering};
|
||||
use core::sync::atomic::{AtomicU32, AtomicU64, Ordering};
|
||||
|
||||
pub mod containers;
|
||||
pub mod error;
|
||||
|
|
@ -15,7 +15,7 @@ pub mod sobol;
|
|||
pub mod splines;
|
||||
pub mod transform;
|
||||
|
||||
pub use ptr::Ptr;
|
||||
pub use ptr::{Ptr, RelPtr};
|
||||
pub use transform::{AnimatedTransform, Transform, TransformGeneric};
|
||||
|
||||
#[inline]
|
||||
|
|
@ -33,55 +33,77 @@ where
|
|||
i
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default, Copy, Clone)]
|
||||
pub struct AtomicFloat {
|
||||
value: f64,
|
||||
bits: AtomicU32,
|
||||
}
|
||||
|
||||
impl AtomicFloat {
|
||||
pub fn new(value: f64) -> Self {
|
||||
Self { value }
|
||||
pub fn new(val: f32) -> Self {
|
||||
Self {
|
||||
bits: AtomicU32::new(val.to_bits()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load(&self) -> f64 {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
{
|
||||
use core::sync::atomic::{AtomicU64, Ordering};
|
||||
let ptr = &self.value as *const f64 as *const AtomicU64;
|
||||
f64::from_bits(unsafe { (*ptr).load(Ordering::Relaxed) })
|
||||
}
|
||||
|
||||
#[cfg(target_os = "cuda")]
|
||||
self.value
|
||||
pub fn get(&self) -> f32 {
|
||||
f32::from_bits(self.bits.load(Ordering::Relaxed))
|
||||
}
|
||||
|
||||
pub fn add(&self, v: f64) {
|
||||
let ptr = &self.value as *const f64 as *mut f64;
|
||||
pub fn set(&self, val: f32) {
|
||||
self.bits.store(val.to_bits(), Ordering::Relaxed);
|
||||
}
|
||||
|
||||
#[cfg(target_os = "cuda")]
|
||||
unsafe {
|
||||
cuda_std::intrinsics::atomic_add(ptr, v);
|
||||
}
|
||||
/// Atomically adds `val` to the current value.
|
||||
/// Uses a Compare-And-Swap (CAS) loop.
|
||||
pub fn add(&self, val: f32) {
|
||||
let mut current_bits = self.bits.load(Ordering::Relaxed);
|
||||
loop {
|
||||
let current_val = f32::from_bits(current_bits);
|
||||
let new_val = current_val + val;
|
||||
let new_bits = new_val.to_bits();
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
unsafe {
|
||||
use core::sync::atomic::{AtomicU64, Ordering};
|
||||
let atomic_ptr = ptr as *const AtomicU64;
|
||||
let atomic = &*atomic_ptr;
|
||||
let mut current_bits = atomic.load(Ordering::Relaxed);
|
||||
loop {
|
||||
let current_val = f64::from_bits(current_bits);
|
||||
let new_val = current_val + v;
|
||||
match atomic.compare_exchange_weak(
|
||||
current_bits,
|
||||
new_val.to_bits(),
|
||||
Ordering::Relaxed,
|
||||
Ordering::Relaxed,
|
||||
) {
|
||||
Ok(_) => break,
|
||||
Err(x) => current_bits = x,
|
||||
}
|
||||
match self.bits.compare_exchange_weak(
|
||||
current_bits,
|
||||
new_bits,
|
||||
Ordering::Relaxed,
|
||||
Ordering::Relaxed,
|
||||
) {
|
||||
Ok(_) => break,
|
||||
Err(x) => current_bits = x,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct AtomicDouble {
|
||||
bits: AtomicU64,
|
||||
}
|
||||
|
||||
impl AtomicDouble {
|
||||
pub fn new(val: f64) -> Self {
|
||||
Self {
|
||||
bits: AtomicU64::new(val.to_bits()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get(&self) -> f64 {
|
||||
f64::from_bits(self.bits.load(Ordering::Relaxed))
|
||||
}
|
||||
|
||||
pub fn add(&self, val: f64) {
|
||||
let mut current_bits = self.bits.load(Ordering::Relaxed);
|
||||
loop {
|
||||
let current_val = f64::from_bits(current_bits);
|
||||
let new_val = current_val + val;
|
||||
let new_bits = new_val.to_bits();
|
||||
|
||||
match self.bits.compare_exchange_weak(
|
||||
current_bits,
|
||||
new_bits,
|
||||
Ordering::Relaxed,
|
||||
Ordering::Relaxed,
|
||||
) {
|
||||
Ok(_) => break,
|
||||
Err(x) => current_bits = x,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -45,7 +45,7 @@ fn noise_weight(t: Float) -> Float {
|
|||
fn grad(x: i32, y: i32, z: i32, dx: Float, dy: Float, dz: Float) -> Float {
|
||||
let hash =
|
||||
NOISE_PERM[NOISE_PERM[NOISE_PERM[x as usize] as usize + y as usize] as usize + z as usize];
|
||||
let h = h & 15;
|
||||
let h = hash & 15;
|
||||
let u = if h < 8 || h == 12 || h == 13 { dx } else { dy };
|
||||
let v = if h < 4 || h == 12 || h == 13 { dy } else { dz };
|
||||
|
||||
|
|
@ -64,10 +64,20 @@ fn grad(x: i32, y: i32, z: i32, dx: Float, dy: Float, dz: Float) -> Float {
|
|||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn noise_from_point(mut p: Point3f) -> Float {
|
||||
pub fn noise_from_point(p: Point3f) -> Float {
|
||||
noise(p.x(), p.y(), p.z())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn noise_2d(x: Float, y: Float) -> Float {
|
||||
noise(x, y, 0.5)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn noise_1d(x: Float) -> Float {
|
||||
noise(x, 0.5, 0.5)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn noise(mut x: Float, mut y: Float, mut z: Float) -> Float {
|
||||
let max_coord = (1i32 << 30) as Float;
|
||||
|
|
@ -98,13 +108,13 @@ pub fn noise(mut x: Float, mut y: Float, mut z: Float) -> Float {
|
|||
|
||||
// Fetch gradients
|
||||
let w000 = grad(ix, iy, iz, dx, dy, dz);
|
||||
let w100 = grad(ix + 1, iy, iz, dx - 1, dy, dz);
|
||||
let w010 = grad(ix, iy + 1, iz, dx, dy - 1, dz);
|
||||
let w110 = grad(ix + 1, iy + 1, iz, dx - 1, dy - 1, dz);
|
||||
let w001 = grad(ix, iy, iz + 1, dx, dy, dz - 1);
|
||||
let w101 = grad(ix + 1, iy, iz + 1, dx - 1, dy, dz - 1);
|
||||
let w011 = grad(ix, iy + 1, iz + 1, dx, dy - 1, dz - 1);
|
||||
let w111 = grad(ix + 1, iy + 1, iz + 1, dx - 1, dy - 1, dz - 1);
|
||||
let w100 = grad(ix + 1, iy, iz, dx - 1., dy, dz);
|
||||
let w010 = grad(ix, iy + 1, iz, dx, dy - 1., dz);
|
||||
let w110 = grad(ix + 1, iy + 1, iz, dx - 1., dy - 1., dz);
|
||||
let w001 = grad(ix, iy, iz + 1, dx, dy, dz - 1.);
|
||||
let w101 = grad(ix + 1, iy, iz + 1, dx - 1., dy, dz - 1.);
|
||||
let w011 = grad(ix, iy + 1, iz + 1, dx, dy - 1., dz - 1.);
|
||||
let w111 = grad(ix + 1, iy + 1, iz + 1, dx - 1., dy - 1., dz - 1.);
|
||||
|
||||
let wx = noise_weight(dx);
|
||||
let wy = noise_weight(dy);
|
||||
|
|
@ -121,23 +131,25 @@ pub fn noise(mut x: Float, mut y: Float, mut z: Float) -> Float {
|
|||
lerp(wz, y0, y1)
|
||||
}
|
||||
|
||||
pub fn fbm(p: Point3f, dpdx: Vector3f, dpdy: Vector3f, omega: Float, max_octaves: usize) -> Float {
|
||||
pub fn fbm(p: Point3f, dpdx: Vector3f, dpdy: Vector3f, omega: Float, max_octaves: u32) -> Float {
|
||||
// Compute number of octaves for antialiased FBm
|
||||
let len2 = dpdx.norm_squared().max(dpdy.norm_squared());
|
||||
let n = clamp(-1. - len.log2() / 2., 0., max_octaves);
|
||||
let n_int = n.floor();
|
||||
let n = clamp(-1. - len2.log2() / 2., 0., max_octaves as Float);
|
||||
let n_int = n.floor() as usize;
|
||||
|
||||
let mut sum = 0.;
|
||||
let mut lambda = 1.;
|
||||
let mut o = 1;
|
||||
for i in 0..n_int {
|
||||
sum += o * Noise(lambda * p);
|
||||
let mut o = 1.;
|
||||
for _ in 0..n_int {
|
||||
sum += o * noise_from_point(Point3f::from(lambda * Vector3f::from(p)));
|
||||
lambda *= 1.99;
|
||||
o *= omega;
|
||||
}
|
||||
|
||||
let n_partial = n - n_int;
|
||||
sum += o * smooth_step(n_partial, 0.3, 0.7) * noise_from_point(lambda * p);
|
||||
let n_partial = n - n_int as Float;
|
||||
sum += o
|
||||
* smooth_step(n_partial, 0.3, 0.7)
|
||||
* noise_from_point(Point3f::from(lambda * Vector3f::from(p)));
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
|
@ -147,30 +159,30 @@ pub fn turbulence(
|
|||
dpdx: Vector3f,
|
||||
dpdy: Vector3f,
|
||||
omega: Float,
|
||||
max_octaves: usize,
|
||||
max_octaves: u32,
|
||||
) -> Float {
|
||||
// Compute number of octaves for antialiased FBm
|
||||
let len2 = dpdx.norm_squared().max(dpdy.norm_squared());
|
||||
let n = clamp(-1. - len2.log2() / 2., 0, maxOctaves);
|
||||
let n_int = n.floor();
|
||||
let n = clamp(-1. - len2.log2() / 2., 0., max_octaves as Float);
|
||||
let n_int = n.floor() as usize;
|
||||
|
||||
// Compute sum of octaves of noise for turbulence
|
||||
let mut sum = 0.;
|
||||
let mut lambda = 1.;
|
||||
let mut o = 1.;
|
||||
for i in 0..n_int {
|
||||
sum += o * noise_from_point(lambda * p).abs();
|
||||
for _ in 0..n_int {
|
||||
sum += o * noise_from_point(Point3f::from(lambda * Vector3f::from(p)));
|
||||
lambda *= 1.99;
|
||||
o *= omega;
|
||||
}
|
||||
|
||||
let n_partial = n - n_int;
|
||||
let n_partial = n - n_int as Float;
|
||||
sum += o * lerp(
|
||||
smooth_step(n_partial, 0.3, 0.7),
|
||||
0.2,
|
||||
noise_from_point(lambda * p).abs(),
|
||||
noise_from_point(Point3f::from(lambda * Vector3f::from(p))).abs(),
|
||||
);
|
||||
for i in n_int..max_octaves {
|
||||
for _ in n_int..max_octaves as usize {
|
||||
sum += o * 0.2;
|
||||
o *= omega;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,21 +1,22 @@
|
|||
use core::marker::PhantomData;
|
||||
use core::ops::Index;
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug)]
|
||||
pub struct Ptr<T: ?Sized> {
|
||||
offset: isize,
|
||||
pub struct RelPtr<T: ?Sized> {
|
||||
offset: i32,
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T: ?Sized> Clone for Ptr<T> {
|
||||
impl<T: ?Sized> Clone for RelPtr<T> {
|
||||
fn clone(&self) -> Self {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized> Copy for Ptr<T> {}
|
||||
impl<T: ?Sized> Copy for RelPtr<T> {}
|
||||
|
||||
impl<T> Ptr<T> {
|
||||
impl<T> RelPtr<T> {
|
||||
pub fn null() -> Self {
|
||||
Self {
|
||||
offset: 0,
|
||||
|
|
@ -23,8 +24,8 @@ impl<T> Ptr<T> {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn is_null(&self) -> Self {
|
||||
self.offset = 0;
|
||||
pub fn is_null(&self) -> bool {
|
||||
self.offset == 0
|
||||
}
|
||||
|
||||
pub fn get(&self) -> Option<&T> {
|
||||
|
|
@ -33,17 +34,115 @@ impl<T> Ptr<T> {
|
|||
} else {
|
||||
unsafe {
|
||||
let base = self as *const _ as *const u8;
|
||||
let target = base.offset(self.offset) as *const T;
|
||||
let target = base.offset(self.offset as isize) as *const T;
|
||||
target.as_ref()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(me: *const Self, target: *const T) -> Self {
|
||||
if target.is_null() {
|
||||
return Self::null();
|
||||
}
|
||||
|
||||
let diff = unsafe { (target as *const u8).offset_from(me as *const u8) };
|
||||
|
||||
if diff > i32::MAX as isize || diff < i32::MIN as isize {
|
||||
panic!("RelPtr offset out of i32 range! Are objects too far apart?");
|
||||
}
|
||||
|
||||
Self {
|
||||
offset: diff,
|
||||
offset: diff as i32,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(transparent)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Ptr<T>(pub *const T);
|
||||
|
||||
impl<T> Default for Ptr<T> {
|
||||
fn default() -> Self {
|
||||
Self(core::ptr::null())
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Ptr<T> {
|
||||
pub fn null() -> Self {
|
||||
Self::default()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn is_null(&self) -> bool {
|
||||
self.0.is_null()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn as_ref(&self) -> Option<&T> {
|
||||
unsafe { self.0.as_ref() }
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<T: Sync> Send for Ptr<T> {}
|
||||
unsafe impl<T: Sync> Sync for Ptr<T> {}
|
||||
|
||||
impl<T> std::ops::Deref for Ptr<T> {
|
||||
type Target = T;
|
||||
|
||||
#[inline(always)]
|
||||
fn deref(&self) -> &Self::Target {
|
||||
unsafe { &*self.0 }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<&T> for Ptr<T> {
|
||||
fn from(r: &T) -> Self {
|
||||
Self(r as *const T)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<&mut T> for Ptr<T> {
|
||||
fn from(r: &mut T) -> Self {
|
||||
Self(r as *const T)
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Slice<T> {
|
||||
pub ptr: Ptr<T>,
|
||||
pub len: u32,
|
||||
pub _marker: PhantomData<T>,
|
||||
}
|
||||
|
||||
unsafe impl<T: Sync> Send for Slice<T> {}
|
||||
unsafe impl<T: Sync> Sync for Slice<T> {}
|
||||
|
||||
impl<T> Slice<T> {
|
||||
pub fn new(ptr: Ptr<T>, len: u32) -> Self {
|
||||
Self {
|
||||
ptr,
|
||||
len,
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn as_ptr(&self) -> *const T {
|
||||
self.ptr.0
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.len == 0
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Index<usize> for Slice<T> {
|
||||
type Output = T;
|
||||
|
||||
#[inline(always)]
|
||||
fn index(&self, index: usize) -> &Self::Output {
|
||||
unsafe { &*self.ptr.0.add(index) }
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,7 +1,8 @@
|
|||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Rng {
|
||||
state: u64,
|
||||
inc: u64,
|
||||
pub state: u64,
|
||||
pub inc: u64,
|
||||
}
|
||||
|
||||
impl Default for Rng {
|
||||
|
|
|
|||
|
|
@ -2,18 +2,18 @@ use crate::check_rare;
|
|||
use crate::core::geometry::{
|
||||
Bounds2f, Frame, Point2f, Point2i, Point3f, Vector2f, Vector2i, Vector3f, VectorLike,
|
||||
};
|
||||
use crate::core::pbrt::{
|
||||
Float, INV_2_PI, INV_4_PI, INV_PI, ONE_MINUS_EPSILON, PI, PI_OVER_2, PI_OVER_4, find_interval,
|
||||
};
|
||||
use crate::core::pbrt::{RARE_EVENT_CONDITION_MET, RARE_EVENT_TOTAL_CALLS};
|
||||
use crate::utils::containers::Array2D;
|
||||
use crate::utils::math::{
|
||||
catmull_rom_weights, clamp, difference_of_products, evaluate_polynomial, lerp, logistic,
|
||||
newton_bisection, safe_sqrt, square, sum_of_products,
|
||||
};
|
||||
use crate::utils::ptr::Ptr;
|
||||
use crate::utils::rng::Rng;
|
||||
use crate::{
|
||||
Float, INV_2_PI, INV_4_PI, INV_PI, ONE_MINUS_EPSILON, PI, PI_OVER_2, PI_OVER_4, find_interval,
|
||||
};
|
||||
use num_traits::Num;
|
||||
use std::sync::atomic::{AtomicU64, Ordering as SyncOrdering};
|
||||
|
||||
pub fn linear_pdf<T>(x: T, a: T, b: T) -> T
|
||||
where
|
||||
|
|
@ -642,23 +642,14 @@ pub fn cosine_hemisphere_pdf(cos_theta: Float) -> Float {
|
|||
cos_theta * INV_PI
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Default, Copy, Clone)]
|
||||
pub struct VarianceEstimator {
|
||||
mean: Float,
|
||||
s: Float,
|
||||
n: i64,
|
||||
}
|
||||
|
||||
impl Default for VarianceEstimator {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
mean: 0.0,
|
||||
s: 0.0,
|
||||
n: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl VarianceEstimator {
|
||||
pub fn add(&mut self, x: Float) {
|
||||
self.n += 1;
|
||||
|
|
@ -717,8 +708,8 @@ pub struct PiecewiseConstant1D {
|
|||
pub func_integral: Float,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl PiecewiseConstant1D {
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new_with_bounds(f: &[Float], min: Float, max: Float) -> Self {
|
||||
let n = f.len();
|
||||
let mut func_vec = f.to_vec();
|
||||
|
|
@ -728,10 +719,11 @@ impl PiecewiseConstant1D {
|
|||
for i in 1..=n {
|
||||
cdf_vec[i] = cdf_vec[i - 1] + func_vec[i - 1] / n as Float;
|
||||
}
|
||||
let func_int = cdf_vec[n];
|
||||
if func_int > 0.0 {
|
||||
|
||||
let func_integral = cdf_vec[n];
|
||||
if func_integral > 0.0 {
|
||||
for i in 1..=n {
|
||||
cdf_vec[i] /= func_int;
|
||||
cdf_vec[i] /= func_integral;
|
||||
}
|
||||
} else {
|
||||
for i in 1..=n {
|
||||
|
|
@ -754,24 +746,11 @@ impl PiecewiseConstant1D {
|
|||
}
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(f: &[Float]) -> Self {
|
||||
Self::new_with_bounds(f, 0., 1.)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl Drop for PiecewiseConstant1D {
|
||||
fn drop(&mut self) {
|
||||
if !self.func.is_null() {
|
||||
unsafe {
|
||||
let _ = Vec::from_raw_parts(self.func, self.n, self.n);
|
||||
let _ = Vec::from_raw_parts(self.cdf, self.n + 1, self.n + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PiecewiseConstant1D {
|
||||
pub fn integral(&self) -> Float {
|
||||
self.func_integral
|
||||
}
|
||||
|
|
@ -801,16 +780,16 @@ impl PiecewiseConstant1D {
|
|||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct PiecewiseConstant2D {
|
||||
pub domain: Bounds2f,
|
||||
pub p_conditional_v: *mut PiecewiseConstant1D,
|
||||
pub p_conditional_v: Ptr<PiecewiseConstant1D>,
|
||||
pub p_marginal: PiecewiseConstant1D,
|
||||
pub n_conditionals: usize,
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl PiecewiseConstant2D {
|
||||
pub fn new(data: &Array2D<Float>, nu: usize, nv: usize, domain: Bounds2f) -> Self {
|
||||
let nu = data.x_size() as usize;
|
||||
let nv = data.y_size() as usize;
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new(data: &Array2D<Float>, x_size: u32, y_size: u32, domain: Bounds2f) -> Self {
|
||||
let nu = x_size as usize;
|
||||
let nv = y_size as usize;
|
||||
let mut conditionals = Vec::with_capacity(nv);
|
||||
for v in 0..nv {
|
||||
let row = unsafe { core::slice::from_raw_parts(data.values.add(v * nu), nu) };
|
||||
|
|
@ -839,10 +818,12 @@ impl PiecewiseConstant2D {
|
|||
}
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new_with_bounds(data: &Array2D<Float>, domain: Bounds2f) -> Self {
|
||||
Self::new(data, data.x_size(), data.y_size(), domain)
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
pub fn new_with_data(data: &Array2D<Float>) -> Self {
|
||||
let nx = data.x_size();
|
||||
let ny = data.y_size();
|
||||
|
|
@ -850,24 +831,7 @@ impl PiecewiseConstant2D {
|
|||
|
||||
Self::new(data, nx, ny, domain)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(target_os = "cuda"))]
|
||||
impl Drop for PiecewiseConstant2D {
|
||||
fn drop(&mut self) {
|
||||
if !self.p_conditional_v.is_null() {
|
||||
unsafe {
|
||||
let _ = Vec::from_raw_parts(
|
||||
self.p_conditional_v,
|
||||
self.n_conditionals,
|
||||
self.n_conditionals,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PiecewiseConstant2D {
|
||||
pub fn resolution(&self) -> Point2i {
|
||||
Point2i::new(
|
||||
self.p_conditional_v[0].size() as i32,
|
||||
|
|
@ -904,9 +868,10 @@ impl PiecewiseConstant2D {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct SummedAreaTable {
|
||||
sum: Array2D<f64>,
|
||||
pub sum: Array2D<f64>,
|
||||
}
|
||||
|
||||
impl SummedAreaTable {
|
||||
|
|
@ -983,7 +948,8 @@ impl SummedAreaTable {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct WindowedPiecewiseConstant2D {
|
||||
sat: SummedAreaTable,
|
||||
func: Array2D<Float>,
|
||||
|
|
@ -1095,96 +1061,54 @@ impl WindowedPiecewiseConstant2D {
|
|||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Bin {
|
||||
q: Float,
|
||||
p: Float,
|
||||
alias: usize,
|
||||
pub q: Float,
|
||||
pub p: Float,
|
||||
pub alias: u32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Debug, Clone)]
|
||||
pub struct AliasTable {
|
||||
bins: Vec<Bin>,
|
||||
pub bins: *const Bin,
|
||||
pub size: u32,
|
||||
}
|
||||
|
||||
unsafe impl Send for AliasTable {}
|
||||
unsafe impl Sync for AliasTable {}
|
||||
|
||||
impl AliasTable {
|
||||
pub fn new(weights: &[Float]) -> Self {
|
||||
let n = weights.len();
|
||||
if n == 0 {
|
||||
return Self { bins: Vec::new() };
|
||||
}
|
||||
let sum: f64 = weights.iter().map(|&w| w as f64).sum();
|
||||
assert!(sum > 0.0, "Sum of weights must be positive");
|
||||
let mut bins = Vec::with_capacity(n);
|
||||
for &w in weights {
|
||||
bins.push(Bin {
|
||||
p: (w as f64 / sum) as Float,
|
||||
q: 0.0,
|
||||
alias: 0,
|
||||
});
|
||||
}
|
||||
|
||||
struct Outcome {
|
||||
p_hat: f64,
|
||||
index: usize,
|
||||
}
|
||||
|
||||
let mut under = Vec::with_capacity(n);
|
||||
let mut over = Vec::with_capacity(n);
|
||||
|
||||
for (i, bin) in bins.iter().enumerate() {
|
||||
let p_hat = (bin.p as f64) * (n as f64);
|
||||
if p_hat < 1.0 {
|
||||
under.push(Outcome { p_hat, index: i });
|
||||
} else {
|
||||
over.push(Outcome { p_hat, index: i });
|
||||
}
|
||||
}
|
||||
|
||||
while !under.is_empty() && !over.is_empty() {
|
||||
let un = under.pop().unwrap();
|
||||
let ov = over.pop().unwrap();
|
||||
|
||||
bins[un.index].q = un.p_hat as Float;
|
||||
bins[un.index].alias = ov.index;
|
||||
|
||||
let p_excess = un.p_hat + ov.p_hat - 1.0;
|
||||
|
||||
if p_excess < 1.0 {
|
||||
under.push(Outcome {
|
||||
p_hat: p_excess,
|
||||
index: ov.index,
|
||||
});
|
||||
} else {
|
||||
over.push(Outcome {
|
||||
p_hat: p_excess,
|
||||
index: ov.index,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
while let Some(ov) = over.pop() {
|
||||
bins[ov.index].q = 1.0;
|
||||
bins[ov.index].alias = ov.index;
|
||||
}
|
||||
|
||||
while let Some(un) = under.pop() {
|
||||
bins[un.index].q = 1.0;
|
||||
bins[un.index].alias = un.index;
|
||||
}
|
||||
|
||||
Self { bins }
|
||||
#[inline(always)]
|
||||
fn bin(&self, idx: u32) -> &Bin {
|
||||
unsafe { &*self.bins.add(idx as usize) }
|
||||
}
|
||||
|
||||
pub fn sample(&self, u: Float) -> (usize, Float, Float) {
|
||||
let n = self.bins.len();
|
||||
pub fn size(&self) -> u32 {
|
||||
self.size as u32
|
||||
}
|
||||
|
||||
let val = u * (n as Float);
|
||||
let offset = std::cmp::min(val as usize, n - 1);
|
||||
pub fn pmf(&self, index: u32) -> Float {
|
||||
if index >= self.size() {
|
||||
return 0.0;
|
||||
}
|
||||
self.bin(index).p
|
||||
}
|
||||
|
||||
pub fn sample(&self, u: Float) -> (u32, Float, Float) {
|
||||
if self.size == 0 {
|
||||
return (0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
let n = self.size as Float;
|
||||
|
||||
let val = u * n;
|
||||
let offset = (val.min(n - 1.0)) as u32;
|
||||
|
||||
let up = (val - (offset as Float)).min(ONE_MINUS_EPSILON);
|
||||
|
||||
let bin = &self.bins[offset];
|
||||
let bin = self.bin(offset);
|
||||
|
||||
if up < bin.q {
|
||||
debug_assert!(bin.p > 0.0);
|
||||
|
|
@ -1197,7 +1121,7 @@ impl AliasTable {
|
|||
} else {
|
||||
let alias_idx = bin.alias;
|
||||
|
||||
let alias_p = self.bins[alias_idx].p;
|
||||
let alias_p = self.bin(alias_idx).p;
|
||||
debug_assert!(alias_p > 0.0);
|
||||
|
||||
let u_remapped = ((up - bin.q) / (1.0 - bin.q)).min(ONE_MINUS_EPSILON);
|
||||
|
|
@ -1205,140 +1129,22 @@ impl AliasTable {
|
|||
(alias_idx, alias_p, u_remapped)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn size(&self) -> usize {
|
||||
self.bins.len()
|
||||
}
|
||||
|
||||
pub fn pmf(&self, index: usize) -> Float {
|
||||
self.bins[index].p
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct PiecewiseLinear2D<const N: usize> {
|
||||
size: Vector2i,
|
||||
inv_patch_size: Vector2f,
|
||||
param_size: [u32; N],
|
||||
param_strides: [u32; N],
|
||||
param_values: [Vec<Float>; N],
|
||||
data: Vec<Float>,
|
||||
marginal_cdf: Vec<Float>,
|
||||
conditional_cdf: Vec<Float>,
|
||||
pub size: Vector2i,
|
||||
pub inv_patch_size: Vector2f,
|
||||
pub param_size: [u32; N],
|
||||
pub param_strides: [u32; N],
|
||||
pub param_values: [Ptr<Float>; N],
|
||||
pub data: Ptr<Float>,
|
||||
pub marginal_cdf: Ptr<Float>,
|
||||
pub conditional_cdf: Ptr<Float>,
|
||||
}
|
||||
|
||||
impl<const N: usize> PiecewiseLinear2D<N> {
|
||||
pub fn new(
|
||||
data: &[Float],
|
||||
x_size: i32,
|
||||
y_size: i32,
|
||||
param_res: [i32; N],
|
||||
param_values: [&[Float]; N],
|
||||
normalize: bool,
|
||||
build_cdf: bool,
|
||||
) -> Self {
|
||||
if build_cdf && !normalize {
|
||||
panic!("PiecewiseLinear2D::new: build_cdf implies normalize=true");
|
||||
}
|
||||
|
||||
let size = Vector2i::new(x_size, y_size);
|
||||
let inv_patch_size = Vector2f::new(1. / (x_size - 1) as Float, 1. / (y_size - 1) as Float);
|
||||
|
||||
let mut param_size = [0u32; N];
|
||||
let mut param_strides = [0u32; N];
|
||||
let param_values = std::array::from_fn(|i| param_values[i].to_vec());
|
||||
|
||||
let mut slices: u32 = 1;
|
||||
for i in (0..N).rev() {
|
||||
if param_res[i] < 1 {
|
||||
panic!("PiecewiseLinear2D::new: parameter resolution must be >= 1!");
|
||||
}
|
||||
param_size[i] = param_res[i] as u32;
|
||||
param_strides[i] = if param_res[i] > 1 { slices } else { 0 };
|
||||
slices *= param_size[i];
|
||||
}
|
||||
|
||||
let n_values = (x_size * y_size) as usize;
|
||||
let mut new_data = vec![0.0; slices as usize * n_values];
|
||||
let mut marginal_cdf = if build_cdf {
|
||||
vec![0.0; slices as usize * y_size as usize]
|
||||
} else {
|
||||
Vec::new()
|
||||
};
|
||||
let mut conditional_cdf = if build_cdf {
|
||||
vec![0.0; slices as usize * n_values]
|
||||
} else {
|
||||
Vec::new()
|
||||
};
|
||||
|
||||
let mut data_offset = 0;
|
||||
for slice in 0..slices as usize {
|
||||
let slice_offset = slice * n_values;
|
||||
let current_data = &data[data_offset..data_offset + n_values];
|
||||
let mut sum = 0.;
|
||||
|
||||
// Construct conditional CDF
|
||||
if normalize {
|
||||
for y in 0..(y_size - 1) {
|
||||
for x in 0..(x_size - 1) {
|
||||
let i = (y * x_size + x) as usize;
|
||||
let v00 = current_data[i] as f64;
|
||||
let v10 = current_data[i + 1] as f64;
|
||||
let v01 = current_data[i + x_size as usize] as f64;
|
||||
let v11 = current_data[i + 1 + x_size as usize] as f64;
|
||||
sum += 0.25 * (v00 + v10 + v01 + v11);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let normalization = if normalize && sum > 0.0 {
|
||||
1.0 / sum as Float
|
||||
} else {
|
||||
1.0
|
||||
};
|
||||
for k in 0..n_values {
|
||||
new_data[slice_offset + k] = current_data[k] * normalization;
|
||||
}
|
||||
|
||||
if build_cdf {
|
||||
let marginal_slice_offset = slice * y_size as usize;
|
||||
// Construct marginal CDF
|
||||
for y in 0..y_size as usize {
|
||||
let mut cdf_sum = 0.0;
|
||||
let i_base = y * x_size as usize;
|
||||
conditional_cdf[slice_offset + i_base] = 0.0;
|
||||
for x in 0..(x_size - 1) as usize {
|
||||
let i = i_base + x;
|
||||
cdf_sum +=
|
||||
0.5 * (new_data[slice_offset + i] + new_data[slice_offset + i + 1]);
|
||||
conditional_cdf[slice_offset + i + 1] = cdf_sum;
|
||||
}
|
||||
}
|
||||
// Construct marginal CDF
|
||||
marginal_cdf[marginal_slice_offset] = 0.0;
|
||||
let mut marginal_sum = 0.0;
|
||||
for y in 0..(y_size - 1) as usize {
|
||||
let cdf1 = conditional_cdf[slice_offset + (y + 1) * x_size as usize - 1];
|
||||
let cdf2 = conditional_cdf[slice_offset + (y + 2) * x_size as usize - 1];
|
||||
marginal_sum += 0.5 * (cdf1 + cdf2);
|
||||
marginal_cdf[marginal_slice_offset + y + 1] = marginal_sum;
|
||||
}
|
||||
}
|
||||
data_offset += n_values;
|
||||
}
|
||||
|
||||
Self {
|
||||
size,
|
||||
inv_patch_size,
|
||||
param_size,
|
||||
param_strides,
|
||||
param_values,
|
||||
data: new_data,
|
||||
marginal_cdf,
|
||||
conditional_cdf,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sample(&self, mut sample: Point2f, params: [Float; N]) -> PLSample {
|
||||
sample = Point2f::new(
|
||||
sample.x().clamp(0.0, ONE_MINUS_EPSILON),
|
||||
|
|
@ -1353,7 +1159,7 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
let conditional_offset = slice_offset * conditional_size;
|
||||
let fetch_marginal = |idx: u32| {
|
||||
self.lookup(
|
||||
&self.marginal_cdf,
|
||||
self.marginal_cdf,
|
||||
marginal_offset + idx,
|
||||
marginal_size,
|
||||
¶m_weights,
|
||||
|
|
@ -1363,13 +1169,13 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
let marginal_cdf_row = fetch_marginal(row);
|
||||
sample[1] -= marginal_cdf_row;
|
||||
let r0 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_offset + (row + 1) * self.size.x() as u32 - 1,
|
||||
conditional_size,
|
||||
¶m_weights,
|
||||
);
|
||||
let r1 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_offset + (row + 2) * self.size.x() as u32 - 1,
|
||||
conditional_size,
|
||||
¶m_weights,
|
||||
|
|
@ -1386,13 +1192,13 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
let conditional_row_offset = conditional_offset + row * self.size.x() as u32;
|
||||
let fetch_conditional = |idx: u32| {
|
||||
let v0 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_row_offset + idx,
|
||||
conditional_size,
|
||||
¶m_weights,
|
||||
);
|
||||
let v1 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_row_offset + idx + self.size.x() as u32,
|
||||
conditional_size,
|
||||
¶m_weights,
|
||||
|
|
@ -1404,16 +1210,16 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
});
|
||||
sample[0] -= fetch_conditional(col);
|
||||
let offset = conditional_row_offset + col;
|
||||
let v00 = self.lookup(&self.data, offset, slice_size, ¶m_weights);
|
||||
let v10 = self.lookup(&self.data, offset + 1, slice_size, ¶m_weights);
|
||||
let v00 = self.lookup(self.data, offset, slice_size, ¶m_weights);
|
||||
let v10 = self.lookup(self.data, offset + 1, slice_size, ¶m_weights);
|
||||
let v01 = self.lookup(
|
||||
&self.data,
|
||||
self.data,
|
||||
offset + self.size.x() as u32,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
);
|
||||
let v11 = self.lookup(
|
||||
&self.data,
|
||||
self.data,
|
||||
offset + self.size.x() as u32 + 1,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
|
|
@ -1450,16 +1256,16 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
let frac = Point2f::new(p.x() - col as Float, p.y() - row as Float);
|
||||
let slice_size = (self.size.x() * self.size.y()) as u32;
|
||||
let offset = slice_offset * slice_size + (row * self.size.x() + col) as u32;
|
||||
let v00 = self.lookup(&self.data, offset, slice_size, ¶m_weights);
|
||||
let v10 = self.lookup(&self.data, offset + 1, slice_size, ¶m_weights);
|
||||
let v00 = self.lookup(self.data, offset, slice_size, ¶m_weights);
|
||||
let v10 = self.lookup(self.data, offset + 1, slice_size, ¶m_weights);
|
||||
let v01 = self.lookup(
|
||||
&self.data,
|
||||
self.data,
|
||||
offset + self.size.x() as u32,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
);
|
||||
let v11 = self.lookup(
|
||||
&self.data,
|
||||
self.data,
|
||||
offset + self.size.x() as u32 + 1,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
|
|
@ -1473,26 +1279,26 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
u[0] = w1.x() * (c0 + 0.5 * w1.x() * (c1 - c0));
|
||||
let conditional_row_offset = slice_offset * slice_size + (row * self.size.x()) as u32;
|
||||
let v0 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_row_offset + col as u32,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
);
|
||||
let v1 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_row_offset + col as u32 + self.size.x() as u32,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
);
|
||||
u[0] += (1.0 - u.y()) * v0 + u.y() * v1;
|
||||
let r0 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_row_offset + self.size.x() as u32 - 1,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
);
|
||||
let r1 = self.lookup(
|
||||
&self.conditional_cdf,
|
||||
self.conditional_cdf,
|
||||
conditional_row_offset + self.size.x() as u32 * 2 - 1,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
|
|
@ -1501,7 +1307,7 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
u[1] = w1.y() * (r0 + 0.5 * w1.y() * (r1 - r0));
|
||||
let marginal_offset = slice_offset * self.size.y() as u32 + row as u32;
|
||||
u[1] += self.lookup(
|
||||
&self.marginal_cdf,
|
||||
self.marginal_cdf,
|
||||
marginal_offset,
|
||||
self.size.y() as u32,
|
||||
¶m_weights,
|
||||
|
|
@ -1525,16 +1331,16 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
let w0 = Point2f::new(1.0 - w1.x(), 1.0 - w1.y());
|
||||
let slice_size = (self.size.x() * self.size.y()) as u32;
|
||||
let offset = slice_offset * slice_size + (row * self.size.x() + col) as u32;
|
||||
let v00 = self.lookup(&self.data, offset, slice_size, ¶m_weights);
|
||||
let v10 = self.lookup(&self.data, offset + 1, slice_size, ¶m_weights);
|
||||
let v00 = self.lookup(self.data, offset, slice_size, ¶m_weights);
|
||||
let v10 = self.lookup(self.data, offset + 1, slice_size, ¶m_weights);
|
||||
let v01 = self.lookup(
|
||||
&self.data,
|
||||
self.data,
|
||||
offset + self.size.x() as u32,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
);
|
||||
let v11 = self.lookup(
|
||||
&self.data,
|
||||
self.data,
|
||||
offset + self.size.x() as u32 + 1,
|
||||
slice_size,
|
||||
¶m_weights,
|
||||
|
|
@ -1544,29 +1350,41 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
pdf * self.inv_patch_size.x() * self.inv_patch_size.y()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_param_value(&self, dim: usize, idx: usize) -> Float {
|
||||
// Safety: Bounds checking against param_size ensures this is valid
|
||||
unsafe { *self.param_values[dim].0.add(idx) }
|
||||
}
|
||||
|
||||
fn get_slice_info(&self, params: [Float; N]) -> (u32, [(Float, Float); N]) {
|
||||
let mut param_weight = [(0.0, 0.0); N];
|
||||
let mut slice_offset = 0u32;
|
||||
|
||||
for dim in 0..N {
|
||||
if self.param_size[dim] == 1 {
|
||||
param_weight[2 * dim] = (1.0, 0.0);
|
||||
let size = self.param_size[dim];
|
||||
|
||||
if size == 1 {
|
||||
param_weight[dim] = (1.0, 0.0);
|
||||
continue;
|
||||
}
|
||||
|
||||
let param_index = find_interval(self.param_size[dim], |idx| {
|
||||
self.param_values[dim][idx as usize] <= params[dim]
|
||||
});
|
||||
let param_index = find_interval(size as usize, |idx| {
|
||||
self.get_param_value(dim, idx) <= params[dim]
|
||||
}) as u32;
|
||||
|
||||
let p0 = self.get_param_value(dim, param_index as usize);
|
||||
|
||||
let next_index = (param_index + 1).min(size - 1);
|
||||
let p1 = self.get_param_value(dim, next_index as usize);
|
||||
|
||||
let p0 = self.param_values[dim][param_index as usize];
|
||||
let p1 = self.param_values[dim]
|
||||
[(param_index as usize + 1).min(self.param_values[dim].len() - 1)];
|
||||
let w1 = if p1 != p0 {
|
||||
((params[dim] - p0) / (p1 - p0)).clamp(0.0, 1.0)
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
param_weight[dim] = (1. - w1, w1);
|
||||
|
||||
param_weight[dim] = (1.0 - w1, w1);
|
||||
|
||||
slice_offset += self.param_strides[dim] * param_index;
|
||||
}
|
||||
|
||||
|
|
@ -1575,7 +1393,7 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
|
||||
fn lookup(
|
||||
&self,
|
||||
data: &[Float],
|
||||
data: Ptr<Float>,
|
||||
i0: u32,
|
||||
size: u32,
|
||||
param_weight: &[(Float, Float); N],
|
||||
|
|
@ -1596,32 +1414,35 @@ impl<const N: usize> PiecewiseLinear2D<N> {
|
|||
|
||||
current_mask >>= 1;
|
||||
}
|
||||
result += weight * data[(i0 + offset) as usize];
|
||||
let idx = (i0 + offset) as usize;
|
||||
let val = unsafe { *data.0.add(idx) };
|
||||
result += weight * val;
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct WeightedReservoirSampler<T> {
|
||||
rng: Rng,
|
||||
weight_sum: Float,
|
||||
reservoir_weight: Float,
|
||||
reservoir: Option<T>,
|
||||
reservoir: T,
|
||||
}
|
||||
|
||||
impl<T> Default for WeightedReservoirSampler<T> {
|
||||
impl<T: Default + Copy> Default for WeightedReservoirSampler<T> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
rng: Rng::default(),
|
||||
weight_sum: 0.0,
|
||||
reservoir_weight: 0.0,
|
||||
reservoir: None,
|
||||
reservoir: T::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> WeightedReservoirSampler<T> {
|
||||
impl<T: Default + Copy> WeightedReservoirSampler<T> {
|
||||
pub fn new(seed: u64) -> Self {
|
||||
let mut rng = Rng::default();
|
||||
rng.set_sequence(seed);
|
||||
|
|
@ -1629,7 +1450,7 @@ impl<T> WeightedReservoirSampler<T> {
|
|||
rng,
|
||||
weight_sum: 0.0,
|
||||
reservoir_weight: 0.0,
|
||||
reservoir: None,
|
||||
reservoir: T::default(),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -1642,7 +1463,7 @@ impl<T> WeightedReservoirSampler<T> {
|
|||
|
||||
let p = weight / self.weight_sum;
|
||||
if self.rng.uniform::<Float>() < p {
|
||||
self.reservoir = Some(sample);
|
||||
self.reservoir = sample;
|
||||
self.reservoir_weight = weight;
|
||||
return true;
|
||||
}
|
||||
|
|
@ -1659,7 +1480,7 @@ impl<T> WeightedReservoirSampler<T> {
|
|||
|
||||
let p = weight / self.weight_sum;
|
||||
if self.rng.uniform::<Float>() < p {
|
||||
self.reservoir = Some(func());
|
||||
self.reservoir = func();
|
||||
self.reservoir_weight = weight;
|
||||
return true;
|
||||
}
|
||||
|
|
@ -1682,7 +1503,11 @@ impl<T> WeightedReservoirSampler<T> {
|
|||
}
|
||||
|
||||
pub fn get_sample(&self) -> Option<&T> {
|
||||
self.reservoir.as_ref()
|
||||
if self.has_sample() {
|
||||
Some(&self.reservoir)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sample_probability(&self) -> Float {
|
||||
|
|
@ -1700,19 +1525,12 @@ impl<T> WeightedReservoirSampler<T> {
|
|||
pub fn reset(&mut self) {
|
||||
self.reservoir_weight = 0.0;
|
||||
self.weight_sum = 0.0;
|
||||
self.reservoir = None;
|
||||
self.reservoir = T::default();
|
||||
}
|
||||
|
||||
pub fn merge(&mut self, other: &WeightedReservoirSampler<T>)
|
||||
where
|
||||
T: Clone,
|
||||
{
|
||||
// debug_assert!(self.weight_sum + other.weight_sum < 1e80);
|
||||
|
||||
if let Some(other_sample) = &other.reservoir
|
||||
&& self.add(other_sample.clone(), other.weight_sum)
|
||||
{
|
||||
self.reservoir_weight = other.reservoir_weight;
|
||||
pub fn merge(&mut self, other: &Self) {
|
||||
if other.has_sample() {
|
||||
self.add(other.reservoir, other.weight_sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -59,6 +59,46 @@ pub fn subdivide_cubic_bezier(cp: &[Point3f]) -> [Point3f; 7] {
|
|||
]
|
||||
}
|
||||
|
||||
pub fn elevate_quadratic_bezier_to_cubic(cp: &[Point3f]) -> [Point3f; 4] {
|
||||
[
|
||||
cp[0],
|
||||
lerp(2. / 3., cp[0], cp[1]),
|
||||
lerp(1. / 3., cp[1], cp[2]),
|
||||
cp[2],
|
||||
]
|
||||
}
|
||||
|
||||
pub fn cubic_bspline_to_bezier(cp: &[Point3f]) -> [Point3f; 4] {
|
||||
// Blossom from p012, p123, p234, and p345 to the Bezier control points
|
||||
// p222, p223, p233, and p333.
|
||||
// https://people.eecs.berkeley.edu/~sequin/CS284/IMGS/cubicbsplinepoints.gif
|
||||
let p012 = cp[0];
|
||||
let p123 = cp[1];
|
||||
let p234 = cp[2];
|
||||
let p345 = cp[3];
|
||||
|
||||
let p122 = lerp(2. / 3., p012, p123);
|
||||
let p223 = lerp(1. / 3., p123, p234);
|
||||
let p233 = lerp(2. / 3., p123, p234);
|
||||
let p334 = lerp(1. / 3., p234, p345);
|
||||
|
||||
let p222 = lerp(0.5, p122, p223);
|
||||
let p333 = lerp(0.5, p233, p334);
|
||||
|
||||
[p222, p223, p233, p333]
|
||||
}
|
||||
|
||||
pub fn quadratic_bspline_to_bezier(cp: &[Point3f]) -> [Point3f; 3] {
|
||||
// We can compute equivalent Bezier control points via some blossoming.
|
||||
// We have three control points and a uniform knot vector; we will label
|
||||
// the points p01, p12, and p23. We want the Bezier control points of
|
||||
// the equivalent curve, which are p11, p12, and p22. We already have
|
||||
// p12.
|
||||
let p11 = lerp(0.5, cp[0], cp[1]);
|
||||
let p22 = lerp(0.5, cp[1], cp[2]);
|
||||
[p11, cp[1], p22]
|
||||
}
|
||||
|
||||
pub fn evaluate_cubic_bezier(cp: &[Point3f], u: Float) -> (Point3f, Vector3f) {
|
||||
let cp1 = [
|
||||
lerp(u, cp[0], cp[1]),
|
||||
|
|
|
|||
|
|
@ -1,6 +1,5 @@
|
|||
use num_traits::Float as NumFloat;
|
||||
use std::error::Error;
|
||||
use std::fmt::{self, Display};
|
||||
use std::iter::{Product, Sum};
|
||||
use std::ops::{Add, Div, Index, IndexMut, Mul};
|
||||
use std::sync::Arc;
|
||||
|
|
@ -13,7 +12,7 @@ use crate::core::geometry::{
|
|||
VectorLike,
|
||||
};
|
||||
use crate::core::interaction::{
|
||||
Interaction, InteractionData, InteractionTrait, MediumInteraction, SurfaceInteraction,
|
||||
Interaction, InteractionBase, InteractionTrait, MediumInteraction, SurfaceInteraction,
|
||||
};
|
||||
use crate::core::pbrt::{Float, gamma};
|
||||
use crate::utils::error::InversionError;
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
use crate::core::geometry::{Bounds3f, Point3f, Ray, Vector3f};
|
||||
use crate::core::pbrt::{Float, find_interval};
|
||||
use crate::core::primitive::PrimitiveTrait;
|
||||
use crate::shapes::ShapeIntersection;
|
||||
use crate::core::shape::ShapeIntersection;
|
||||
use crate::utils::math::encode_morton_3;
|
||||
use crate::utils::math::next_float_down;
|
||||
use crate::utils::partition_slice;
|
||||
34
src/core/bssrdf.rs
Normal file
34
src/core/bssrdf.rs
Normal file
|
|
@ -0,0 +1,34 @@
|
|||
pub struct BSSRDFTableData {
|
||||
pub rho_samples: Vec<Float>,
|
||||
pub radius_samples: Vec<Float>,
|
||||
pub profile: Vec<Float>,
|
||||
pub rho_eff: Vec<Float>,
|
||||
pub profile_cdf: Vec<Float>,
|
||||
}
|
||||
|
||||
impl BSSRDFTableData {
|
||||
pub fn new(n_rho_samples: usize, n_radius_samples: usize) -> Self {
|
||||
let rho_samples: Vec<Float> = Vec::with_capacity(n_rho_samples);
|
||||
let radius_samples: Vec<Float> = Vec::with_capacity(n_radius_samples);
|
||||
let profile: Vec<Float> = Vec::with_capacity(n_radius_samples * n_rho_samples);
|
||||
let rho_eff: Vec<Float> = Vec::with_capacity(n_rho_samples);
|
||||
let profile_cdf: Vec<Float> = Vec::with_capacity(n_radius_samples * n_rho_samples);
|
||||
Self {
|
||||
rho_samples,
|
||||
radius_samples,
|
||||
profile,
|
||||
rho_eff,
|
||||
profile_cdf,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn view(&self, rho_ptr: *const f32, radius_ptr: *const f32) -> BSSRDFTableView {
|
||||
BSSRDFTable {
|
||||
rho_samples: rho_ptr,
|
||||
n_rho: self.rho_samples.len() as u32,
|
||||
radius_samples: radius_ptr,
|
||||
n_radius: self.radius_samples.len() as u32,
|
||||
// ...
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1,7 +1,8 @@
|
|||
use crate::core::image::ImageMetadata;
|
||||
use crate::utils::{FileLoc, ParameterDictionary};
|
||||
use shared::Float;
|
||||
use shared::cameras::*;
|
||||
use shared::core::camera::{Camera, CameraBase, CameraTransform};
|
||||
use shared::core::camera::{Camera, CameraBase, CameraTrait, CameraTransform};
|
||||
use shared::core::film::Film;
|
||||
use shared::core::medium::Medium;
|
||||
use shared::core::options::get_options;
|
||||
|
|
@ -62,6 +63,23 @@ pub trait CameraBaseFactory {
|
|||
|
||||
impl CameraBaseFactory for CameraBase {}
|
||||
|
||||
pub trait InitMetadata {
|
||||
fn init_metadata(&self, metadata: &mut ImageMetadata);
|
||||
}
|
||||
|
||||
impl InitMetadata for CameraBase {
|
||||
fn init_metadata(&self, metadata: &mut ImageMetadata) {
|
||||
let camera_from_world = self.camera_transform.camera_from_world(self.shutter_open);
|
||||
metadata.camera_from_world = Some(camera_from_world.get_matrix());
|
||||
}
|
||||
}
|
||||
|
||||
impl InitMetadata for Camera {
|
||||
fn init_metadata(&self, metadata: &mut ImageMetadata) {
|
||||
self.base().init_metadata(metadata);
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CameraFactory {
|
||||
fn create(
|
||||
name: &str,
|
||||
|
|
|
|||
|
|
@ -32,16 +32,14 @@ impl RGBToSpectrumTableData {
|
|||
view,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load(base_dir: &Path, name: &str) -> io::Result<Self> {
|
||||
let z_path = base_dir.join(format!("{}_znodes.dat", name));
|
||||
let c_path = base_dir.join(format!("{}_coeffs.dat", name));
|
||||
|
||||
let z_nodes = read_float_file(&z_path)?;
|
||||
let coeffs = read_float_file(&c_path)?;
|
||||
|
||||
Ok(Self::new(z_nodes, coeffs))
|
||||
}
|
||||
}
|
||||
|
||||
const LMS_FROM_XYZ: SquareMatrix3f = SquareMatrix::new([
|
||||
[0.8951, 0.2664, -0.1614],
|
||||
[-0.7502, 1.7135, 0.0367],
|
||||
[0.0389, -0.0685, 1.0296],
|
||||
]);
|
||||
|
||||
const XYZ_FROM_LMS: SquareMatrix3f = SquareMatrix::new([
|
||||
[0.986993, -0.147054, 0.159963],
|
||||
[0.432305, 0.51836, 0.0492912],
|
||||
[-0.00852866, 0.0400428, 0.968487],
|
||||
]);
|
||||
|
|
|
|||
|
|
@ -75,6 +75,95 @@ pub trait PixelSensorHost {
|
|||
}
|
||||
}
|
||||
|
||||
struct SpectralFilmStorage {
|
||||
pixels: Array2D<SpectralPixel>,
|
||||
bucket_sums: Vec<f64>,
|
||||
weight_sums: Vec<f64>,
|
||||
bucket_splats: Vec<AtomicFloat>,
|
||||
}
|
||||
|
||||
pub struct SpectralFilmHost {
|
||||
pub view: SpectralFilm,
|
||||
_storage: Box<SpectralFilmStorage>,
|
||||
}
|
||||
|
||||
impl SpectralFilmHost {
|
||||
pub fn new(
|
||||
base: &FilmBase,
|
||||
lambda_min: Float,
|
||||
lambda_max: Float,
|
||||
n_buckets: usize,
|
||||
colorspace: &RGBColorSpace,
|
||||
max_component_value: Float,
|
||||
write_fp16: bool,
|
||||
) -> Self {
|
||||
let n_pixels = base.pixel_bounds.area() as usize;
|
||||
let total_buckets = n_pixels * n_buckets;
|
||||
|
||||
let bucket_sums = vec![0.0; total_buckets];
|
||||
let weight_sums = vec![0.0; total_buckets];
|
||||
|
||||
let mut bucket_splats = Vec::with_capacity(total_buckets);
|
||||
for _ in 0..total_buckets {
|
||||
bucket_splats.push(AtomicFloat::new(0.0));
|
||||
}
|
||||
|
||||
let mut pixels = Array2D::<SpectralPixel>::new(base.pixel_bounds);
|
||||
|
||||
let p_sums_base = bucket_sums.as_ptr() as *mut f64;
|
||||
let p_weights_base = weight_sums.as_ptr() as *mut f64;
|
||||
let p_splats_base = bucket_splats.as_ptr() as *mut AtomicFloat;
|
||||
|
||||
for i in 0..n_pixels {
|
||||
let pixel = pixels.get_linear_mut(i);
|
||||
|
||||
pixel.bucket_offset = i * n_buckets;
|
||||
|
||||
unsafe {
|
||||
let offset = i * n_buckets;
|
||||
|
||||
pixel.bucket_sums = p_sums_base.add(offset);
|
||||
pixel.weight_sums = p_weights_base.add(offset);
|
||||
pixel.bucket_splats = p_splats_base.add(offset);
|
||||
}
|
||||
}
|
||||
|
||||
let storage = Box::new(SpectralFilmStorage {
|
||||
pixels,
|
||||
bucket_sums,
|
||||
weight_sums,
|
||||
bucket_splats,
|
||||
});
|
||||
|
||||
let view = SpectralFilm {
|
||||
base: base.clone(),
|
||||
colorspace: colorspace.clone(),
|
||||
lambda_min,
|
||||
lambda_max,
|
||||
n_buckets: n_buckets as u32,
|
||||
max_component_value,
|
||||
write_fp16,
|
||||
filter_integral: base.filter.integral(),
|
||||
output_rgbf_from_sensor_rgb: SquareMatrix::identity(), // Logic omitted
|
||||
|
||||
pixels: Array2DView {
|
||||
data: storage.pixels.as_mut_ptr(),
|
||||
extent: base.pixel_bounds,
|
||||
x_stride: base.pixel_bounds.max.x - base.pixel_bounds.min.x,
|
||||
},
|
||||
|
||||
bucket_sums: storage.bucket_sums.as_ptr() as *mut f64,
|
||||
weight_sums: storage.weight_sums.as_ptr() as *mut f64,
|
||||
bucket_splats: storage.bucket_splats.as_ptr() as *mut AtomicFloat,
|
||||
};
|
||||
|
||||
Self {
|
||||
view,
|
||||
_storage: storage,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait FilmBaseHost {
|
||||
fn create(
|
||||
params: &ParameterDictionary,
|
||||
|
|
|
|||
368
src/core/image/io.rs
Normal file
368
src/core/image/io.rs
Normal file
|
|
@ -0,0 +1,368 @@
|
|||
use super::ImageBuffer;
|
||||
use crate::utils::error::ImageError;
|
||||
use anyhow::{Context, Result, bail};
|
||||
use exr::prelude::{read_first_rgba_layer_from_file, write_rgba_file};
|
||||
use image_rs::ImageReader;
|
||||
use image_rs::{DynamicImage, ImageBuffer, Rgb, Rgba};
|
||||
use shared::Float;
|
||||
use shared::core::color::{ColorEncoding, LINEAR, SRGB};
|
||||
use shared::core::image::Image;
|
||||
use std::fs::File;
|
||||
use std::io::{BufRead, BufReader, BufWriter, Read, Write};
|
||||
use std::path::Path;
|
||||
|
||||
pub trait ImageIO {
|
||||
fn read(path: &Path, encoding: Option<ColorEncoding>) -> Result<ImageAndMetadata>;
|
||||
fn write(&self, filename: &str, metadata: &ImageMetadata) -> Result<()>;
|
||||
fn write_png(&self, path: &Path) -> Result<()>;
|
||||
fn write_exr(&self, path: &Path, metadata: &ImageMetadata) -> Result<()>;
|
||||
fn write_qoi(&self, path: &Path) -> Result<()>;
|
||||
fn write_pfm(&self, path: &Path) -> Result<()>;
|
||||
fn to_u8_buffer(&self) -> Vec<u8>;
|
||||
}
|
||||
|
||||
impl ImageIO for ImageBuffer {
|
||||
fn read(path: &Path, encoding: Option<ColorEncoding>) -> Result<ImageAndMetadata> {
|
||||
let ext = path
|
||||
.extension()
|
||||
.and_then(|s| s.to_str())
|
||||
.unwrap_or("")
|
||||
.to_lowercase();
|
||||
|
||||
match ext.as_str() {
|
||||
"exr" => read_exr(path),
|
||||
"pfm" => read_pfm(path),
|
||||
_ => read_generic(path, encoding),
|
||||
}
|
||||
}
|
||||
|
||||
fn write(&self, filename: &str, metadata: &ImageMetadata) -> Result<(), ImageError> {
|
||||
let path = Path::new(filename);
|
||||
let ext = path.extension().and_then(|s| s.to_str()).unwrap_or("");
|
||||
let res = match ext.to_lowercase().as_str() {
|
||||
"exr" => self.write_exr(path, metadata),
|
||||
"png" => self.write_png(path),
|
||||
"pfm" => self.write_pfm(path),
|
||||
"qoi" => self.write_qoi(path),
|
||||
_ => Err(anyhow::anyhow!("Unsupported write format: {}", ext)),
|
||||
};
|
||||
res.map_err(|e| ImageError::Io(std::io::Error::other(e)))
|
||||
}
|
||||
|
||||
fn write_png(&self, path: &Path) -> Result<()> {
|
||||
let w = self.resolution.x() as u32;
|
||||
let h = self.resolution.y() as u32;
|
||||
|
||||
// Convert whatever we have to u8 [0..255]
|
||||
let data = self.to_u8_buffer();
|
||||
let channels = self.n_channels();
|
||||
|
||||
match channels {
|
||||
1 => {
|
||||
// Luma
|
||||
image_rs::save_buffer_with_format(
|
||||
path,
|
||||
&data,
|
||||
w,
|
||||
h,
|
||||
image_rs::ColorType::L8,
|
||||
image_rs::ImageFormat::Png,
|
||||
)?;
|
||||
}
|
||||
3 => {
|
||||
// RGB
|
||||
image_rs::save_buffer_with_format(
|
||||
path,
|
||||
&data,
|
||||
w,
|
||||
h,
|
||||
image_rs::ColorType::Rgb8,
|
||||
image_rs::ImageFormat::Png,
|
||||
)?;
|
||||
}
|
||||
4 => {
|
||||
// RGBA
|
||||
image_rs::save_buffer_with_format(
|
||||
path,
|
||||
&data,
|
||||
w,
|
||||
h,
|
||||
image_rs::ColorType::Rgba8,
|
||||
image_rs::ImageFormat::Png,
|
||||
)?;
|
||||
}
|
||||
_ => bail!("PNG writer only supports 1, 3, or 4 channels"),
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_qoi(&self, path: &Path) -> Result<()> {
|
||||
let w = self.resolution.x() as u32;
|
||||
let h = self.resolution.y() as u32;
|
||||
let data = self.to_u8_buffer();
|
||||
|
||||
let color_type = match self.n_channels() {
|
||||
3 => image_rs::ColorType::Rgb8,
|
||||
4 => image_rs::ColorType::Rgba8,
|
||||
_ => bail!("QOI only supports 3 or 4 channels"),
|
||||
};
|
||||
|
||||
image_rs::save_buffer_with_format(
|
||||
path,
|
||||
&data,
|
||||
w,
|
||||
h,
|
||||
color_type,
|
||||
image_rs::ImageFormat::Qoi,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_exr(&self, path: &Path, _metadata: &ImageMetadata) -> Result<()> {
|
||||
// EXR requires F32
|
||||
let w = self.resolution.x() as usize;
|
||||
let h = self.resolution.y() as usize;
|
||||
let c = self.n_channels();
|
||||
|
||||
write_rgba_file(path, w, h, |x, y| {
|
||||
// Helper to get float value regardless of internal storage
|
||||
let get = |ch| {
|
||||
self.get_channel_with_wrap(
|
||||
Point2i::new(x as i32, y as i32),
|
||||
ch,
|
||||
WrapMode::Clamp.into(),
|
||||
)
|
||||
};
|
||||
|
||||
if c == 1 {
|
||||
let v = get(0);
|
||||
(v, v, v, 1.0)
|
||||
} else if c == 3 {
|
||||
(get(0), get(1), get(2), 1.0)
|
||||
} else {
|
||||
(get(0), get(1), get(2), get(3))
|
||||
}
|
||||
})
|
||||
.context("Failed to write EXR")?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_pfm(&self, path: &Path) -> Result<()> {
|
||||
let file = File::create(path)?;
|
||||
let mut writer = BufWriter::new(file);
|
||||
|
||||
if self.n_channels() != 3 {
|
||||
bail!("PFM writing currently only supports 3 channels (RGB)");
|
||||
}
|
||||
|
||||
// Header
|
||||
writeln!(writer, "PF")?;
|
||||
writeln!(writer, "{} {}", self.resolution.x(), self.resolution.y())?;
|
||||
let scale = if cfg!(target_endian = "little") {
|
||||
-1.0
|
||||
} else {
|
||||
1.0
|
||||
};
|
||||
writeln!(writer, "{}", scale)?;
|
||||
|
||||
// PBRT stores top-to-bottom.
|
||||
for y in (0..self.resolution.y()).rev() {
|
||||
for x in 0..self.resolution.x() {
|
||||
for c in 0..3 {
|
||||
let val =
|
||||
self.get_channel_with_wrap(Point2i::new(x, y), c, WrapMode::Clamp.into());
|
||||
writer.write_all(&val.to_le_bytes())?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn to_u8_buffer(&self) -> Vec<u8> {
|
||||
match &self.pixels {
|
||||
PixelData::U8(data) => data.clone(),
|
||||
PixelData::F16(data) => data
|
||||
.iter()
|
||||
.map(|v| (v.to_f32().clamp(0.0, 1.0) * 255.0 + 0.5) as u8)
|
||||
.collect(),
|
||||
PixelData::F32(data) => data
|
||||
.iter()
|
||||
.map(|v| (v.clamp(0.0, 1.0) * 255.0 + 0.5) as u8)
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn read_generic(path: &Path, encoding: Option<ColorEncoding>) -> Result<ImageAndMetadata> {
|
||||
let dyn_img = ImageReader::open(path)
|
||||
.with_context(|| format!("Failed to open image: {:?}", path))?
|
||||
.decode()?;
|
||||
|
||||
let w = dyn_img.width() as i32;
|
||||
let h = dyn_img.height() as i32;
|
||||
let res = Point2i::new(w, h);
|
||||
|
||||
// Check if it was loaded as high precision or standard
|
||||
let image = match dyn_img {
|
||||
DynamicImage::ImageRgb32F(buf) => Image {
|
||||
format: PixelFormat::F32,
|
||||
resolution: res,
|
||||
channel_names: vec!["R".into(), "G".into(), "B".into()],
|
||||
encoding: LINEAR,
|
||||
pixels: PixelData::F32(buf.into_raw()),
|
||||
},
|
||||
DynamicImage::ImageRgba32F(buf) => Image {
|
||||
format: PixelFormat::F32,
|
||||
resolution: res,
|
||||
channel_names: vec!["R".into(), "G".into(), "B".into(), "A".into()],
|
||||
encoding: LINEAR,
|
||||
pixels: PixelData::F32(buf.into_raw()),
|
||||
},
|
||||
_ => {
|
||||
// Default to RGB8 for everything else
|
||||
if dyn_img.color().has_alpha() {
|
||||
let buf = dyn_img.to_rgba8();
|
||||
Image {
|
||||
format: PixelFormat::U8,
|
||||
resolution: res,
|
||||
channel_names: vec!["R".into(), "G".into(), "B".into(), "A".into()],
|
||||
encoding: encoding.unwrap_or(SRGB),
|
||||
pixels: PixelData::U8(buf.into_raw()),
|
||||
}
|
||||
} else {
|
||||
let buf = dyn_img.to_rgb8();
|
||||
Image {
|
||||
format: PixelFormat::U8,
|
||||
resolution: res,
|
||||
channel_names: vec!["R".into(), "G".into(), "B".into()],
|
||||
encoding: encoding.unwrap_or(SRGB),
|
||||
pixels: PixelData::U8(buf.into_raw()),
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let metadata = ImageMetadata::default();
|
||||
Ok(ImageAndMetadata { image, metadata })
|
||||
}
|
||||
|
||||
fn read_exr(path: &Path) -> Result<ImageAndMetadata> {
|
||||
let image = read_first_rgba_layer_from_file(
|
||||
path,
|
||||
|resolution, _| {
|
||||
let size = resolution.width() * resolution.height() * 4;
|
||||
vec![0.0 as Float; size]
|
||||
},
|
||||
|buffer, position, pixel| {
|
||||
let width = position.width();
|
||||
let idx = (position.y() * width + position.x()) * 4;
|
||||
// Map exr pixel struct to our buffer
|
||||
buffer[idx] = pixel.0;
|
||||
buffer[idx + 1] = pixel.1;
|
||||
buffer[idx + 2] = pixel.2;
|
||||
buffer[idx + 3] = pixel.3;
|
||||
},
|
||||
)
|
||||
.with_context(|| format!("Failed to read EXR: {:?}", path))?;
|
||||
|
||||
let w = image.layer_data.size.width() as i32;
|
||||
let h = image.layer_data.size.height() as i32;
|
||||
|
||||
let image = Image {
|
||||
format: PixelFormat::F32,
|
||||
resolution: Point2i::new(w, h),
|
||||
channel_names: vec!["R".into(), "G".into(), "B".into(), "A".into()],
|
||||
encoding: LINEAR,
|
||||
pixels: PixelData::F32(image.layer_data.channel_data.pixels),
|
||||
};
|
||||
|
||||
let metadata = ImageMetadata::default();
|
||||
Ok(ImageAndMetadata { image, metadata })
|
||||
}
|
||||
|
||||
fn read_pfm(path: &Path) -> Result<ImageAndMetadata> {
|
||||
let file = File::open(path)?;
|
||||
let mut reader = BufReader::new(file);
|
||||
|
||||
// PFM Headers are: "PF\nwidth height\nscale\n" (or Pf for grayscale)
|
||||
let mut header_word = String::new();
|
||||
reader.read_line(&mut header_word)?;
|
||||
let header_word = header_word.trim();
|
||||
|
||||
let channels = match header_word {
|
||||
"PF" => 3,
|
||||
"Pf" => 1,
|
||||
_ => bail!("Invalid PFM header: {}", header_word),
|
||||
};
|
||||
|
||||
let mut dims_line = String::new();
|
||||
reader.read_line(&mut dims_line)?;
|
||||
let dims: Vec<i32> = dims_line
|
||||
.split_whitespace()
|
||||
.map(|s| s.parse().unwrap_or(0))
|
||||
.collect();
|
||||
|
||||
if dims.len() < 2 {
|
||||
bail!("Invalid PFM dimensions");
|
||||
}
|
||||
let w = dims[0];
|
||||
let h = dims[1];
|
||||
|
||||
let mut scale_line = String::new();
|
||||
reader.read_line(&mut scale_line)?;
|
||||
let scale: f32 = scale_line.trim().parse().context("Invalid PFM scale")?;
|
||||
|
||||
let file_is_little_endian = scale < 0.0;
|
||||
let abs_scale = scale.abs();
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
reader.read_to_end(&mut buffer)?;
|
||||
|
||||
let expected_bytes = (w * h * channels) as usize * 4;
|
||||
if buffer.len() < expected_bytes {
|
||||
bail!("PFM file too short");
|
||||
}
|
||||
|
||||
let mut pixels = vec![0.0 as Float; (w * h * channels) as usize];
|
||||
|
||||
// PFM is Bottom-to-Top
|
||||
for y in 0..h {
|
||||
// Flippety-do
|
||||
let src_y = h - 1 - y;
|
||||
for x in 0..w {
|
||||
for c in 0..channels {
|
||||
let src_idx = ((src_y * w + x) * channels + c) as usize * 4;
|
||||
let dst_idx = ((y * w + x) * channels + c) as usize;
|
||||
|
||||
let bytes: [u8; 4] = buffer[src_idx..src_idx + 4].try_into()?;
|
||||
|
||||
let val = if file_is_little_endian {
|
||||
f32::from_le_bytes(bytes)
|
||||
} else {
|
||||
f32::from_be_bytes(bytes)
|
||||
};
|
||||
|
||||
pixels[dst_idx] = val * abs_scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let names = if channels == 1 {
|
||||
vec!["Y".into()]
|
||||
} else {
|
||||
vec!["R".into(), "G".into(), "B".into()]
|
||||
};
|
||||
|
||||
let image = Image {
|
||||
format: PixelFormat::F32,
|
||||
resolution: Point2i::new(w, h),
|
||||
channel_names: names,
|
||||
encoding: LINEAR,
|
||||
pixels: PixelData::F32(pixels),
|
||||
};
|
||||
|
||||
let metadata = ImageMetadata::default();
|
||||
Ok(ImageAndMetadata { image, metadata })
|
||||
}
|
||||
50
src/core/image/metadata.rs
Normal file
50
src/core/image/metadata.rs
Normal file
|
|
@ -0,0 +1,50 @@
|
|||
use crate::core::geometry::{Bounds2i, Point2i};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::spectra::colorspace::RGBColorSpace;
|
||||
use crate::utils::math::SquareMatrix;
|
||||
use smallvec::SmallVec;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use std::ops::{Deref, DerefMut};
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct ImageChannelDesc {
|
||||
pub offset: Vec<usize>,
|
||||
}
|
||||
|
||||
impl ImageChannelDesc {
|
||||
pub fn new(offset: &[usize]) -> Self {
|
||||
Self {
|
||||
offset: offset.into(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn size(&self) -> usize {
|
||||
self.offset.len()
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.offset.is_empty()
|
||||
}
|
||||
pub fn is_identity(&self) -> bool {
|
||||
for i in 0..self.size() {
|
||||
if self.offset[i] != i {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
pub struct ImageMetadata {
|
||||
pub render_time_seconds: Option<Float>,
|
||||
pub camera_from_world: Option<SquareMatrix<Float, 4>>,
|
||||
pub ndc_from_world: Option<SquareMatrix<Float, 4>>,
|
||||
pub pixel_bounds: Option<Bounds2i>,
|
||||
pub full_resolution: Option<Point2i>,
|
||||
pub samples_per_pixel: Option<i32>,
|
||||
pub mse: Option<Float>,
|
||||
pub colorspace: Option<RGBColorSpace>,
|
||||
pub strings: HashMap<String, String>,
|
||||
pub string_vectors: HashMap<String, Vec<String>>,
|
||||
}
|
||||
636
src/core/image/mod.rs
Normal file
636
src/core/image/mod.rs
Normal file
|
|
@ -0,0 +1,636 @@
|
|||
use shared::core::geometry::Point2i;
|
||||
use shared::core::image::{Image, PixelFormat};
|
||||
use shared::utils::math::f16_to_f32;
|
||||
use std::ops::Deref;
|
||||
|
||||
pub mod io;
|
||||
pub mod metadata;
|
||||
pub mod ops;
|
||||
pub mod pixel;
|
||||
|
||||
pub use metadata::*;
|
||||
|
||||
impl std::fmt::Display for PixelFormat {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match self {
|
||||
PixelFormat::U8 => write!(f, "U256"),
|
||||
PixelFormat::F16 => write!(f, "Half"),
|
||||
PixelFormat::F32 => write!(f, "Float"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default)]
|
||||
pub struct ImageChannelValues(pub SmallVec<[Float; 4]>);
|
||||
|
||||
impl ImageChannelValues {
|
||||
pub fn average(&self) -> Float {
|
||||
if self.0.is_empty() {
|
||||
return 0.0;
|
||||
}
|
||||
let sum: Float = self.0.iter().sum();
|
||||
sum / (self.0.len() as Float)
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> Float {
|
||||
self.0.iter().fold(Float::MIN, |a, &b| a.max(b))
|
||||
}
|
||||
}
|
||||
|
||||
impl From<&[Float]> for ImageChannelValues {
|
||||
fn from(slice: &[Float]) -> Self {
|
||||
Self(SmallVec::from_slice(slice))
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Vec<Float>> for ImageChannelValues {
|
||||
fn from(vec: Vec<Float>) -> Self {
|
||||
Self(SmallVec::from_vec(vec))
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> From<[Float; N]> for ImageChannelValues {
|
||||
fn from(arr: [Float; N]) -> Self {
|
||||
Self(SmallVec::from_slice(&arr))
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for ImageChannelValues {
|
||||
type Target = SmallVec<[Float; 4]>;
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl DerefMut for ImageChannelValues {
|
||||
fn deref_mut(&mut self) -> &mut Self::Target {
|
||||
&mut self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum PixelStorage {
|
||||
U8(Vec<u8>),
|
||||
F16(Vec<f16>),
|
||||
F32(Vec<f32>),
|
||||
}
|
||||
|
||||
pub struct ImageBuffer {
|
||||
pub view: Image,
|
||||
pub channel_names: Vec<String>,
|
||||
_storage: PixelStorage,
|
||||
}
|
||||
|
||||
impl Deref for ImageBuffer {
|
||||
type Target = Image;
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.view
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ImageAndMetadata {
|
||||
pub image: ImageBuffer,
|
||||
pub metadata: ImageMetadata,
|
||||
}
|
||||
|
||||
impl ImageBuffer {
|
||||
fn resolution(&self) {
|
||||
self.view.resolution()
|
||||
}
|
||||
|
||||
pub fn new_empty() -> Self {
|
||||
Self {
|
||||
channel_names: Vec::new(),
|
||||
_storage: PixelStorage::U8(Vec::new()),
|
||||
view: Image {
|
||||
format: PixelFormat::U256,
|
||||
resolution: Point2i::new(0, 0),
|
||||
n_channels: 0,
|
||||
pixels: Pixels::U8(std::ptr::null()),
|
||||
encoding: ColorEncoding::default(),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn from_vector(
|
||||
format: PixelFormat,
|
||||
resolution: Point2i,
|
||||
channel_names: Vec<String>,
|
||||
encoding: ColorEncoding,
|
||||
) -> Self {
|
||||
let n_channels = channel_names.len() as i32;
|
||||
let (format, pixels_view) = match &storage {
|
||||
PixelStorage::U8(vec) => (PixelFormat::U8, ImagePixels::U8(vec.as_ptr())),
|
||||
PixelStorage::F16(vec) => (PixelFormat::F16, ImagePixels::F16(vec.as_ptr())),
|
||||
PixelStorage::F32(vec) => (PixelFormat::F32, ImagePixels::F32(vec.as_ptr())),
|
||||
};
|
||||
|
||||
let view = Image {
|
||||
format,
|
||||
resolution,
|
||||
n_channels,
|
||||
encoding,
|
||||
pixels: pixels_view,
|
||||
};
|
||||
|
||||
Self {
|
||||
view,
|
||||
_storage: storage,
|
||||
channel_names,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_u8(
|
||||
data: Vec<u8>,
|
||||
resolution: Point2i,
|
||||
channel_names: Vec<String>,
|
||||
encoding: ColorEncoding,
|
||||
) -> Self {
|
||||
let n_channels = channel_names.len() as i32;
|
||||
let expected_len = (resolution.x * resolution.y) as usize * n_channels as usize;
|
||||
if data.len() != expected_len {
|
||||
panic!(
|
||||
"ImageBuffer::from_u8: Data length {} does not match resolution {:?} * channels {}",
|
||||
data.len(),
|
||||
resolution,
|
||||
n_channels
|
||||
);
|
||||
}
|
||||
|
||||
let storage = PixelStorage::U8(data);
|
||||
|
||||
let ptr = match &storage {
|
||||
PixelStorage::U8(v) => v.as_ptr(),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let view = Image {
|
||||
format: PixelFormat::U256,
|
||||
resolution,
|
||||
n_channels,
|
||||
pixels: Pixels::U8(ptr),
|
||||
encoding: encoding.clone(),
|
||||
};
|
||||
|
||||
Self {
|
||||
view,
|
||||
channel_names,
|
||||
_storage: storage,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_u8(
|
||||
data: Vec<u8>,
|
||||
resolution: Point2i,
|
||||
channel_names: Vec<String>,
|
||||
encoding: ColorEncoding,
|
||||
) -> Self {
|
||||
let n_channels = channel_names.len() as i32;
|
||||
let expected_len = (resolution.x * resolution.y) as usize * n_channels as usize;
|
||||
|
||||
if data.len() != expected_len {
|
||||
panic!(
|
||||
"ImageBuffer::from_u8: Data length {} does not match resolution {:?} * channels {}",
|
||||
data.len(),
|
||||
resolution,
|
||||
n_channels
|
||||
);
|
||||
}
|
||||
|
||||
let storage = PixelStorage::U8(data);
|
||||
|
||||
let ptr = match &storage {
|
||||
PixelStorage::U8(v) => v.as_ptr(),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let view = Image {
|
||||
format: PixelFormat::U256,
|
||||
resolution,
|
||||
n_channels,
|
||||
pixels: Pixels::U8(ptr),
|
||||
encoding: encoding.clone(),
|
||||
};
|
||||
|
||||
Self {
|
||||
view,
|
||||
channel_names,
|
||||
_storage: storage,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_f16(data: Vec<half::f16>, resolution: Point2i, channel_names: Vec<String>) -> Self {
|
||||
let n_channels = channel_names.len() as i32;
|
||||
let expected_len = (resolution.x * resolution.y) as usize * n_channels as usize;
|
||||
|
||||
if data.len() != expected_len {
|
||||
panic!("ImageBuffer::from_f16: Data length mismatch");
|
||||
}
|
||||
|
||||
let storage = PixelStorage::F16(data);
|
||||
|
||||
let ptr = match &storage {
|
||||
PixelStorage::F16(v) => v.as_ptr() as *const u16,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let view = Image {
|
||||
format: PixelFormat::Half,
|
||||
resolution,
|
||||
n_channels,
|
||||
pixels: Pixels::F16(ptr),
|
||||
encoding: ColorEncoding::default(),
|
||||
};
|
||||
|
||||
Self {
|
||||
view,
|
||||
channel_names,
|
||||
_storage: storage,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_f32(data: Vec<f32>, resolution: Point2i, channel_names: Vec<String>) -> Self {
|
||||
let n_channels = channel_names.len() as i32;
|
||||
let expected_len = (resolution.x * resolution.y) as usize * n_channels as usize;
|
||||
|
||||
if data.len() != expected_len {
|
||||
panic!("ImageBuffer::from_f32: Data length mismatch");
|
||||
}
|
||||
|
||||
let storage = PixelStorage::F32(data);
|
||||
|
||||
let ptr = match &storage {
|
||||
PixelStorage::F32(v) => v.as_ptr(),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let view = Image {
|
||||
format: PixelFormat::Float,
|
||||
resolution,
|
||||
n_channels,
|
||||
pixels: Pixels::F32(ptr),
|
||||
encoding: ColorEncoding::default(),
|
||||
};
|
||||
|
||||
Self {
|
||||
view,
|
||||
channel_names,
|
||||
_storage: storage,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new(
|
||||
format: PixelFormat,
|
||||
resolution: Point2i,
|
||||
channel_names: &[&str],
|
||||
encoding: *const ColorEncoding,
|
||||
) -> Self {
|
||||
let n_channels = channel_names.len();
|
||||
let pixel_count = (resolution.x * resolution.y) as usize * n_channels;
|
||||
let owned_names: Vec<String> = channel_names.iter().map(|s| s.to_string()).collect();
|
||||
|
||||
let storage = match format {
|
||||
PixelFormat::U8 => PixelStorage::U8(vec![0; pixel_count]),
|
||||
PixelFormat::F16 => PixelStorage::F16(vec![0; pixel_count]),
|
||||
PixelFormat::F32 => PixelStorage::F32(vec![0.0; pixel_count]),
|
||||
};
|
||||
|
||||
Self::from_vector(storage, resolution, owned_names, encoding)
|
||||
}
|
||||
|
||||
pub fn channel_names(&self) -> Vec<&str> {
|
||||
self.channel_names.iter().map(|s| s.as_str()).collect()
|
||||
}
|
||||
|
||||
pub fn encoding(&self) -> ColorEncoding {
|
||||
self.view.encoding
|
||||
}
|
||||
|
||||
pub fn set_channel(&self, p: Point2i, c: i32, mut value: Float) {
|
||||
if value.is_nan() {
|
||||
value = 0.0;
|
||||
}
|
||||
|
||||
if !self.view.resolution.inside_exclusive(p) {
|
||||
return;
|
||||
}
|
||||
|
||||
let offset = self.view.pixel_offset(p) + c as usize;
|
||||
match &mut self._storage {
|
||||
PixelStorage::U8(data) => {
|
||||
if !self.view.encoding.is_null() {
|
||||
data[offset] = self.view.encoding.from_linear_scalar(value);
|
||||
} else {
|
||||
let val = (value * 255.0 + 0.5).clamp(0.0, 255.0);
|
||||
data[offset] = val as u8;
|
||||
}
|
||||
}
|
||||
PixelStorage::F16(data) => {
|
||||
data[offset] = f16_to_f32(value);
|
||||
}
|
||||
PixelStorage::F32(data) => {
|
||||
data[offset] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_channels_with_wrap(&self, p: Point2i, wrap_mode: WrapMode2D) -> ImageChannelValues {
|
||||
let mut pp = p;
|
||||
if !self.view.remap_pixel_coords(&mut pp, wrap_mode) {
|
||||
return ImageChannelValues(smallvec![0.0; desc.offset.len()]);
|
||||
}
|
||||
|
||||
let pixel_offset = self.view.pixel_offset(pp);
|
||||
let mut values: SmallVec<[Float; 4]> = SmallVec::with_capacity(desc.offset.len());
|
||||
match &self.pixels {
|
||||
PixelData::U8(data) => {
|
||||
for i in 0..self.view.n_channels() {
|
||||
let raw_val = data[pixel_offset + i];
|
||||
let linear = self.view.encoding.to_linear_scalar(raw_val);
|
||||
values.push(linear);
|
||||
}
|
||||
}
|
||||
PixelData::F16(data) => {
|
||||
for i in 0..self.view.n_channels() {
|
||||
let raw_val = data[pixel_offset];
|
||||
values.push(f16_to_f32(raw_val));
|
||||
}
|
||||
}
|
||||
PixelData::F32(data) => {
|
||||
for i in 0..self.view.n_channels() {
|
||||
let val = data[pixel_offset + i];
|
||||
values.push(val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImageChannelValues(values)
|
||||
}
|
||||
|
||||
pub fn get_channels(&self, p: Point2i) -> ImageChannelValues {
|
||||
self.get_channels_with_wrap(p, WrapMode::Clamp.into())
|
||||
}
|
||||
|
||||
pub fn get_channels_with_desc(
|
||||
&self,
|
||||
p: Point2i,
|
||||
desc: &ImageChannelDesc,
|
||||
wrap: WrapMode2D,
|
||||
) -> ImageChannelValues {
|
||||
let mut pp = p;
|
||||
if !self.view.remap_pixel_coords(&mut pp, wrap) {
|
||||
return ImageChannelValues(smallvec![0.0; desc.offset.len()]);
|
||||
}
|
||||
|
||||
let pixel_offset = self.view.pixel_offset(pp);
|
||||
|
||||
let mut values: SmallVec<[Float; 4]> = SmallVec::with_capacity(desc.offset.len());
|
||||
|
||||
match &self.pixels {
|
||||
PixelData::U8(data) => {
|
||||
for &channel_idx in &desc.offset {
|
||||
let raw_val = data[pixel_offset + channel_idx as usize];
|
||||
let linear = self.view.encoding.to_linear_scalar(raw_val);
|
||||
values.push(linear);
|
||||
}
|
||||
}
|
||||
PixelData::F16(data) => {
|
||||
for &channel_idx in &desc.offset {
|
||||
let raw_val = data[pixel_offset + channel_idx as usize];
|
||||
values.push(f16_to_f32(raw_val));
|
||||
}
|
||||
}
|
||||
PixelData::F32(data) => {
|
||||
for &channel_idx in &desc.offset {
|
||||
let val = data[pixel_offset + channel_idx as usize];
|
||||
values.push(val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImageChannelValues(values)
|
||||
}
|
||||
|
||||
pub fn channel_names_from_desc(&self, desc: &ImageChannelDesc) -> Vec<&str> {
|
||||
desc.offset
|
||||
.iter()
|
||||
.map(|&i| self.channel_names[i].as_str())
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn get_channel_desc(
|
||||
&self,
|
||||
requested_channels: &[&str],
|
||||
) -> Result<ImageChannelDesc, String> {
|
||||
let mut offset = Vec::with_capacity(requested_channels.len());
|
||||
|
||||
for &req in requested_channels.iter() {
|
||||
match self.channel_names.iter().position(|n| n == req) {
|
||||
Some(idx) => {
|
||||
offset.push(idx);
|
||||
}
|
||||
None => {
|
||||
return Err(format!(
|
||||
"Image is missing requested channel '{}'. Available channels: {:?}",
|
||||
req, self.channel_names
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(ImageChannelDesc { offset })
|
||||
}
|
||||
|
||||
pub fn all_channels_desc(&self) -> ImageChannelDesc {
|
||||
ImageChannelDesc {
|
||||
offset: (0..self.n_channels()).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn select_channels(&self, desc: &ImageChannelDesc) -> Self {
|
||||
let desc_channel_names: Vec<String> = desc
|
||||
.offset
|
||||
.iter()
|
||||
.map(|&i| self.channel_names[i as usize])
|
||||
.collect();
|
||||
|
||||
let new_storage = match &self._storage {
|
||||
PixelStorage::U8(src_data) => {
|
||||
// Allocate destination buffer
|
||||
let mut dst_data = vec![0u8; pixel_count * dst_n_channels];
|
||||
|
||||
// Iterate over every pixel (Flat loop is faster than nested x,y)
|
||||
for i in 0..pixel_count {
|
||||
let src_pixel_start = i * src_n_channels;
|
||||
let dst_pixel_start = i * dst_n_channels;
|
||||
|
||||
// Copy specific channels based on desc
|
||||
for (out_idx, &in_channel_offset) in desc.offset.iter().enumerate() {
|
||||
let val = src_data[src_pixel_start + in_channel_offset as usize];
|
||||
dst_data[dst_pixel_start + out_idx] = val;
|
||||
}
|
||||
}
|
||||
PixelStorage::U8(dst_data)
|
||||
}
|
||||
PixelStorage::F16(src_data) => {
|
||||
let mut dst_data = vec![half::f16::ZERO; pixel_count * dst_n_channels];
|
||||
|
||||
for i in 0..pixel_count {
|
||||
let src_pixel_start = i * src_n_channels;
|
||||
let dst_pixel_start = i * dst_n_channels;
|
||||
|
||||
for (out_idx, &in_channel_offset) in desc.offset.iter().enumerate() {
|
||||
let val = src_data[src_pixel_start + in_channel_offset as usize];
|
||||
dst_data[dst_pixel_start + out_idx] = val;
|
||||
}
|
||||
}
|
||||
PixelStorage::F16(dst_data)
|
||||
}
|
||||
PixelStorage::F32(src_data) => {
|
||||
let mut dst_data = vec![0.0; pixel_count * dst_n_channels];
|
||||
|
||||
for i in 0..pixel_count {
|
||||
let src_pixel_start = i * src_n_channels;
|
||||
let dst_pixel_start = i * dst_n_channels;
|
||||
|
||||
for (out_idx, &in_channel_offset) in desc.offset.iter().enumerate() {
|
||||
let val = src_data[src_pixel_start + in_channel_offset as usize];
|
||||
dst_data[dst_pixel_start + out_idx] = val;
|
||||
}
|
||||
}
|
||||
PixelStorage::F32(dst_data)
|
||||
}
|
||||
};
|
||||
|
||||
let image = Self::new(
|
||||
self.format,
|
||||
self.resolution,
|
||||
desc_channel_names,
|
||||
self.encoding(),
|
||||
);
|
||||
}
|
||||
|
||||
pub fn set_channels(
|
||||
&mut self,
|
||||
p: Point2i,
|
||||
desc: &ImageChannelDesc,
|
||||
mut values: &ImageChannelValues,
|
||||
) {
|
||||
assert_eq!(desc.size(), values.len());
|
||||
for i in 0..desc.size() {
|
||||
self.view.set_channel(p, desc.offset[i], values[i]);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_channels_all(&mut self, p: Point2i, values: &ImageChannelValues) {
|
||||
self.set_channels(p, &self.all_channels_desc(), values)
|
||||
}
|
||||
|
||||
pub fn get_sampling_distribution<F>(&self, dxd_a: F, domain: Bounds2f) -> Array2D<Float>
|
||||
where
|
||||
F: Fn(Point2f) -> Float + Sync + Send,
|
||||
{
|
||||
let width = self.resolution().x();
|
||||
let height = self.resolution().y();
|
||||
|
||||
let mut dist = Array2D::new_with_dims(width as usize, height as usize);
|
||||
|
||||
dist.values
|
||||
.par_chunks_mut(width as usize)
|
||||
.enumerate()
|
||||
.for_each(|(y, row)| {
|
||||
let y = y as i32;
|
||||
|
||||
for (x, out_val) in row.iter_mut().enumerate() {
|
||||
let x = x as i32;
|
||||
|
||||
let value = self.get_channels_default(Point2i::new(x, y)).average();
|
||||
|
||||
let u = (x as Float + 0.5) / width as Float;
|
||||
let v = (y as Float + 0.5) / height as Float;
|
||||
let p = domain.lerp(Point2f::new(u, v));
|
||||
*out_val = value * dxd_a(p);
|
||||
}
|
||||
});
|
||||
|
||||
dist
|
||||
}
|
||||
|
||||
pub fn get_sampling_distribution_uniform(&self) -> Array2D<Float> {
|
||||
let default_domain = Bounds2f::from_points(Point2f::new(0.0, 0.0), Point2f::new(1.0, 1.0));
|
||||
|
||||
self.get_sampling_distribution(|_| 1.0, default_domain)
|
||||
}
|
||||
|
||||
pub fn mse(
|
||||
&self,
|
||||
desc: ImageChannelDesc,
|
||||
ref_img: &Image,
|
||||
generate_mse_image: bool,
|
||||
) -> (ImageChannelValues, Option<Image>) {
|
||||
let mut sum_se: Vec<f64> = vec![0.; desc.size()];
|
||||
let names_ref = self.channel_names_from_desc(&desc);
|
||||
let ref_desc = ref_img
|
||||
.get_channel_desc(&self.channel_names_from_desc(&desc))
|
||||
.expect("Channels not found in image");
|
||||
assert_eq!(self.resolution(), ref_img.resolution());
|
||||
|
||||
let width = self.resolution.x() as usize;
|
||||
let height = self.resolution.y() as usize;
|
||||
let n_channels = desc.offset.len();
|
||||
let mut mse_pixels = if generate_mse_image {
|
||||
vec![0.0f32; width * height * n_channels]
|
||||
} else {
|
||||
Vec::new()
|
||||
};
|
||||
|
||||
for y in 0..self.resolution().y() {
|
||||
for x in 0..self.resolution().x() {
|
||||
let v =
|
||||
self.get_channel_with_desc(Point2i::new(x, y), &desc, WrapMode::Clamp.into());
|
||||
let v_ref = self.get_channel_with_desc(
|
||||
Point2i::new(x, y),
|
||||
&ref_desc,
|
||||
WrapMode::Clamp.into(),
|
||||
);
|
||||
for c in 0..desc.size() {
|
||||
let se = square(v[c] as f64 - v_ref[c] as f64);
|
||||
if se.is_infinite() {
|
||||
continue;
|
||||
}
|
||||
sum_se[c] += se;
|
||||
if generate_mse_image {
|
||||
let idx = (y as usize * width + x as usize) * n_channels + c;
|
||||
mse_pixels[idx] = se as f32;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let pixel_count = (self.resolution().x() * self.resolution.y()) as f64;
|
||||
let mse_values: SmallVec<[Float; 4]> =
|
||||
sum_se.iter().map(|&s| (s / pixel_count) as Float).collect();
|
||||
|
||||
let mse_image = if generate_mse_image {
|
||||
Some(Image::new(
|
||||
PixelFormat::F32,
|
||||
self.resolution,
|
||||
&names_ref,
|
||||
LINEAR,
|
||||
))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
(ImageChannelValues(mse_values), mse_image)
|
||||
}
|
||||
|
||||
pub fn update_view_pointers(&mut self) {
|
||||
self.view.pixels = match &self._storage {
|
||||
PixelStorage::U8(vec) => Pixels::U8(vec.as_ptr()),
|
||||
PixelStorage::F16(vec) => Pixels::F16(vec.as_ptr() as *const u16),
|
||||
PixelStorage::F32(vec) => Pixels::F32(vec.as_ptr()),
|
||||
};
|
||||
}
|
||||
}
|
||||
|
|
@ -1,10 +1,10 @@
|
|||
// use rayon::prelude::*;
|
||||
use crate::core::geometry::{Bounds2i, Point2i};
|
||||
use crate::core::pbrt::Float;
|
||||
use crate::image::pixel::PixelStorage;
|
||||
use crate::image::{Image, PixelData, PixelFormat, WrapMode, WrapMode2D};
|
||||
use crate::utils::math::windowed_sinc;
|
||||
use super::ImageBuffer;
|
||||
use rayon::prelude::*;
|
||||
use shared::Float;
|
||||
use shared::core::geometry::{Bounds2i, Point2i};
|
||||
use shared::core::image::{PixelFormat, WrapMode, WrapMode2D};
|
||||
use shared::utils::math::windowed_sinc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
|
|
@ -13,7 +13,7 @@ pub struct ResampleWeight {
|
|||
pub weight: [Float; 4],
|
||||
}
|
||||
|
||||
impl Image {
|
||||
impl ImageBuffer {
|
||||
pub fn flip_y(&mut self) {
|
||||
let res = self.resolution;
|
||||
let nc = self.n_channels();
|
||||
16
src/core/light.rs
Normal file
16
src/core/light.rs
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
use shared::core::light::LIghtBase;
|
||||
use shared::core::spectrum::Spectrum;
|
||||
use shared::spectra::DenselySampledSpectrum;
|
||||
|
||||
use crate::core::spectrum::SPECTRUM_CACHE;
|
||||
use crate::utils::containers::InternCache;
|
||||
|
||||
pub trait LightBaseTrait {
|
||||
pub fn lookup_spectrum(s: &Spectrum) -> DenselySampledSpectrum {
|
||||
let cache = SPECTRUM_CACHE.get_or_init(InternCache::new);
|
||||
let dense_spectrum = DenselySampledSpectrum::from_spectrum(s);
|
||||
cache.lookup(dense_spectrum).as_ref()
|
||||
}
|
||||
}
|
||||
|
||||
impl LightBaseTrait for LightBase {}
|
||||
68
src/core/material.rs
Normal file
68
src/core/material.rs
Normal file
|
|
@ -0,0 +1,68 @@
|
|||
use crate::core::image::ImageBuffer;
|
||||
use crate::utils::error::FileLoc;
|
||||
use crate::utils::parameters::ParameterDictionary;
|
||||
use shared::core::material::Material;
|
||||
use shared::materials::*;
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub trait CreateMaterial: Sized {
|
||||
fn create(
|
||||
parameters: &TextureParameterDictionary,
|
||||
normal_map: Option<Arc<ImageBuffer>>,
|
||||
named_materials: &HashMap<String, Material>,
|
||||
loc: &FileLoc,
|
||||
) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! make_material_factory {
|
||||
(
|
||||
$name:ident, $params:ident, $nmap:ident, $mats:ident, $loc:ident;
|
||||
$($key:literal => $variant:ident($concrete:ty)),+ $(,)?
|
||||
) => {
|
||||
match $name {
|
||||
$(
|
||||
$key => {
|
||||
let mat = <$concrete>::create($params, $nmap, $mats, $loc);
|
||||
Ok(Material::$variant(mat))
|
||||
}
|
||||
)+
|
||||
_ => Err(format!("Material type '{}' unknown at {}", $name, $loc)),
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
pub trait MaterialFactory {
|
||||
fn create(
|
||||
name: &str,
|
||||
params: &TextureParameterDictionary,
|
||||
normal_map: Arc<ImageBuffer>,
|
||||
named_materials: HashMap<String, Material>,
|
||||
loc: &FileLoc,
|
||||
) -> Result<Self, String>;
|
||||
}
|
||||
|
||||
impl MaterialFactory for Material {
|
||||
fn create(
|
||||
name: &str,
|
||||
params: &TextureParameterDictionary,
|
||||
normal_map: Option<Arc<Image>>,
|
||||
named_materials: &HashMap<String, Material>,
|
||||
loc: &FileLoc,
|
||||
) -> Result<Self, String> {
|
||||
make_material_factory!(
|
||||
name, params, normal_map, named_materials, loc;
|
||||
|
||||
"diffuse" => Diffuse(DiffuseMaterial),
|
||||
"coateddiffuse" => CoatedDiffuse(CoatedDiffuseMaterial),
|
||||
"coatedconductor" => Conductor(CoatedConductorMaterial),
|
||||
"diffusetransmission" => DiffuseTransmission(DiffuseTransmissionMaterial),
|
||||
"dielectric" => Dielectric(DielectricMaterial),
|
||||
"thindielectric" => ThinDielectric(ThinDielectricMaterial),
|
||||
"hair" => Hair(HairMaterial),
|
||||
"conductor" => Conductor(ConductorMaterial),
|
||||
"measured" => Measured(MeasuredMaterial),
|
||||
"subsurface" => Subsurface(SubsurfaceMaterial),
|
||||
"mix" => Mix(MixMaterial)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
|
@ -1,7 +1,15 @@
|
|||
pub mod aggregates;
|
||||
pub mod bssrdf;
|
||||
pub mod camera;
|
||||
pub mod color;
|
||||
pub mod film;
|
||||
pub mod filter;
|
||||
pub mod image;
|
||||
pub mod light;
|
||||
pub mod material;
|
||||
pub mod sampler;
|
||||
pub mod sampler;
|
||||
pub mod scene;
|
||||
pub mod shape;
|
||||
pub mod spectrum;
|
||||
pub mod texture;
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue